University of

‘ Chester

Penetration Testing API Security

Adam Thomas Wallwork

October - 2023

MSc. Research Dissertation

Department of Computer Science

Abstract

With the constant increase in data breaches (GOV UK, 2022), the need for a different approach
emerges. The practice of offensive penetration testing to simulate real-world threat actors has
become an integral part of the defence strategy. Web applications, network services, and the cloud
are heavily researched and well-understood aspects of cyber security where we see a lot of testing,
innovation, research and development. However, what's noticeably missing is API security, more
specifically, an offensive security strategy that seeks to discover the potential attack vectors

favoured by threat actors.

In this research project, we seek to develop a robust and thorough API penetration testing
methodology that can be used by both security professionals to better test API security and as an
awareness document for developers of the growing threat APIs pose to organisation's data and how

threat actors go through your infrastructure to identify vulnerabilities for exploitation.

Disclaimer

This work is original by the author and has not been previously submitted to support any other

course or qualification (6/9/23).

Acknowledgements

I want to thank my dissertation supervisor, Ashley Wood, for their help and assistance throughout

this research dissertation project.

Table of Contents

AADSITACE ettt ettt ettt ettt ettt s e bt et eae e b e et sa e e bt et ea e bt et e et e e bt et e e at e bt e b e e b enseennee 2
DASCIAIITIOT. .. teeetee ettt ettt e st e e sttt e e s aae e e ateeeaeeesssaeeesseeeesseeessseeesssaesnsseesnsseeessaeensseenseees 3
ACKNOWIBAGEIMENLS.couviiriiiiiieeieeriteete ettt te et e st e et esteebeessbesseesabessseesssesssaesasssaesssssaesnnseeesnns 4
1. Chapter 1 - INrOAUCTION.......cciiuieieiieeeiee et ettt e et e e e e e e e steeesteeesbeeesbeeesaeeesssaeeeessssssaaaassssnnsanes 9
1.1 Background and CONLEXL........cccueerierrieeriersieentesiteestessteesseesseesseessessseesssessssessssssesssssesssssaessns 9
1.2 ProbIem STAteIMeNL.......uveieiieeriieeiieeeiieeeeteeeieeesrteeesteessseeesaseessssesesseeessseessseessseeenssseessnsseeeeens 9
1.3 Rationale for the STUAY.......c.coociiiiiiiiiieeeeeee ettt 10
1.4 ReSEArCH QUESHIOMN. . ..ciiiiiiiiiiireeeieeeieieitttee e e eeeetreeeeeeeeeeesssbaeeeeeeeseesssssssssssssssaansnnnnsssesseseens 11
1.5 Research HyPOthesis.c.eiciiriiiiiieieeieeieesteeieet ettt sttt ettt sttt et s essae e s sasnee s 11
1.6 Objectives Of the STUAY.......cccuiiiiiriieieeeceee ettt et sae e s te e sre e s be e saeeeeasaee s 11
1.7 SCOPE OFf the STUAY....ceeueiiiiiieiiieeeeeee ettt ettt s b e s sae e s abe e ata e e ssbeeesnnes 14
1.8 Limitations Of the STUAY......ccveeviiiiiieiieiiecieeteete ettt te et e e e e s ta e e e rae e e saaeeennes 14
1.9 API Hacking MethodologY OVEIVIEW........cccueevuiirieriiiinieeitesteeie et eeeeseesireeesreeessasaeesnnees 14
1.10 API Vulnerabilities — OWASP TOP TEN......ccccctiiiiiiiiieiniieerieeeieeesreesree e s eeiveeeeessaneeeeas 17
1,11 CONCIUSION. ..ttt ettt et sat et et s e b et e s st e s bt s be e st e beesbeeeseesneesneenans 18

2. Chapter 2 - Literatire REVIEW.......ccucieiiiiriieieiieieiieeeieeestee st e sseeessteeesateesssaeesssseesssssseeeesssnsssnens 19
2.1 INETOAUCTION. ...ttt ettt ettt sat e b et s st e sbe st e s st e bt et e s meebe s s e sseebeennennnes 19
2.2 Theoretical FOUNAAtIONS.........ccceutiriiiieiiieeiieeeiteseiee et e esteeesire e e seeesseaeessaeessaeeessseesssseesssseens 31
2.3 Literature SOUICING PIOCESS.cceiiiiiteeieiiiteeeeteee et eeeriteeeesireeessesreeesesnreeeessnseaeeeeesesaennns 33
2.3.1 INCIUSION CIILOTIA. 1eeeureeeiereeriieeritteeriteeesteeesteeesteeestreessseeessseeesssaeesseeesssaesssseeesssessssseennnns 34
2.3.1.1 Relevance t0 TOPIC......cccuiirieriiinieeiieenie et erte et esate e et e st e steesatesseesasaessnsseeesasseesnnns 34

2.3.1.2 TIME FTAIME...cccuitiiiiiiiieeeeitee ettt e e e s e tte e s e sate e e e ssbbaeesssssaeesssassaaesssnsaaeenas 34

2.3.1.3 TYPe Of LItETatUIE.....ceccvieriieeiieriieeitenieeieeete et e st e ste e st e s bt e st e sbeesaeessseessseeesnneeennns 34

2.3.2 EXCIUSION CIILOIIA. . 0eeietveeriuieeritieeeiiteeniteesieeesteessreeesateeesaseesssseesssseesssssseesesssnssseesssssnsssees 35
2.3.2.1 Irrelevance to API hacKing........c.cooueriuiirieniiienieeieereeeieeste ettt e s eire e 35

2.3.2.2 TIME fTAIME......eiitiieieeiiecieecee et ete e et eete et esae e aeesbe e baeesteesseeseasaeaesssseeesssseesnnens 35

2.3.2.3 Authorship and CONtribULION.........ccuirriiirieiieeieeece et sae e 36

2.3.3 SEATCH StIALEEY ..cccuviiiiuieeiiieeiiieeeiteert e e st e e st eesteeesateeesabeesssteessssessssaaeeeesssssseeesesssnsseees 36

2.3.4 DaataDASES.eeeueeiieierieeiteteet ettt sttt b et st a e b e e bt e e be e e nnaeenee s 37

2.4 Research Methodology in CybDerseCurity........ccceecueeriiieeniieeenieeesieeecieeecee e eere e e svee e 37
2.5 State Of the Art iN APT SECUTILY.....cecviirieeiierieeiterte ettt ettt ettt essreesibee s s abaessabeessssnaesnnn 39
2.6 Penetration TESINE.......cccieruiieeiriiieeieeieeeeeitee e et eessstteeeessreeeessaraeesssssaaessssssaeesssssseeesssseaes 39
2.6.1 General Principles and TeChNiqUeS..........cccecterieeriiniiiiiierieetesteeeee e e 39

2.7 APT Penetration TESTINE.ccceecuuteririiirieeeriiieeeesireeeessiteeeesstteeesssreeesssssseesssssussssssseeseeesssssssnnns 40
2.7.1 API VUINETADILITIES.eeutieiiiiieieiieteeeeetet ettt sttt ettt 40

2.7.2 OWASP TOP TEN...c.uttitiiieieniterieetestt ettt et st st e ste st e saeestesstesseestessseesaseessseesaseesasens 40

2.7.3 Comparable FrameWOTKs..........cccceeriiriiriiinieeieenieeicesteeie ettt s ire e e e 41

2.7.4 Data Breaches via API EXPlOitation.......c.cceecueeiriieeiiiieniieeniieeesieeseieeesieessneeesseesssneesnns 41

2.8 Interdisciplinary ConSiderations...........ccueereeriuieriienieenieesiieesiesieeseessieesiteseeesaaesseesssseeessseess 47
2.8 1 LEZAL..uiiiieeeieeetee ettt ettt et st e e s bt e e et e e e e bt e e s ataeensaeeenateeenaaaeennns 47

2.8.2 EthiCal CONCEITIS.eetiuertiriiintteteeitenteete ettt te et ste et sat et ete st e sbesabesaseesabeesnseeenneenanes 49

2.8.3 BUsiness IMPIlIiCAtiONS.cueerruiiiriieiniieieiieesiee et e esteeesteessteessareesseraaeeeessnsseeesesssnssnes 49

2.9 Identified ReSEArCh Gaps.......cooueriiiiiieiieiteeieeiteete ettt ettt ettt st esbeessna e e snneees 50
2.9.1 AP SECUTILY . ..uuurieeieiiieeieitee ettt e et e e e s sbte e e s s bae e s s sbaaeeesssbaeesssasaaeesesssssssnsnssnnnns 50

2.9.2 Penetration Testing and Ethical Hacking..........ccceeceeriiirieniiiniieniecieeieeee e 50

2.9.3 Data DreACRES.ccuviiiiieeieeeteeete ettt et e e e st e e e te e e saae e e e aba e e e e e e nnnaes 50

2.9.4 API Vulnerabilities and EXPlOitation..........cceceerieriiiinieniiiinieeiieesieeiiee e seieeeseieee e 50

2.9.5 API Development and Secure Coding PractiCes..........ccccecueeervueeeriueeesieeniieenieeeeeesvneens 51

2.10 Relevance t0 HYPOthESIS......cc..iecuiiriiriiiieeieeieeieet ettt ettt et s s e s saeesneeseee s 51

2,11 CritiCAl DS CUSSION. «. e eteeeeettteeeee et eeeette e eeeeeeeeeettaeaeesseesestaennnaesssessseaennnnesssesessnnnesessnnesenenn 52

T N o <l PR 52

2.11.2 Penetration Testing and Ethical Hacking...........cccceevviiiriiiiniiienieeniieee e, 52
2.11.3 Data DrEACHES.coteruieiieieiereertet ettt sttt sttt e 52
2.11.4 API Vulnerabilities and EXplOitation.........c..coeceerriuieiniieeiniieeiiieenieeeseeesseeeseeeesveeenanns 53
2.11.5 API Development and Secure Coding PractiCes..........c.cceceevvereererneenieneennieenneeeeseeennnes 53
2.12 CONCIUSION. ¢..ttteeiteettet ettt ettt ettt e et e st e st e e s bt e e bt e saeesbeessbeeeennreeeenneeeannn 53
3. Chapter 3 — Research MethodolOgyc.cooieriiiiriiniiiinienieeteeie ettt st e s e e 54
3.1 INTOAUCTION. ...ttt ettt ettt e et e et e bt e e ab e e bt e st e e bt e eab e e st e sabeebeeeneeeseesanesaseeann 54
3.2 Background and JUStTiCAtION.c.eerieiriiirieeiieeieetee ettt 54
3.3 ResearCh APPIOaCh......cccuuiiiiiiiiiiecieeeee ettt s e e e sbe e e saaa e e e s e anaaeeeeenn 54
3.4 TOOL SELECHION.eotiiiiriiiiiieeteteee ettt sttt et b et b e st s bt e bt e e seeesateeeaneeeanees 56
3.5 Ethical ConSIAerations..........ccuiieieeirieeiiieeirieeesieessteessseessiseesssseesssseesseeesssseesssseesssssssssessenns 60
3.6 Virtualised Testing ENVIFONIMENL........cccceecteiiiteriieriieenieeiieesiieerieestesseeesteesseeesssreeesssseeesssseeesnns 60
3.7 The Importance of a Methodology.........cccuviriiiiiiiiiieiieieceeeett et svee e 63
3.7.1 Limitations of the Methodology..........ccceecuiiriiiiiiinieiieieeeeeetet et 63
3.8 Configuring The Testing ENVIrONIMENL........cc.ccctiiieriieeiieeieesieeiieeseeeieeseessseesereeesnsneessseeens 64
3.8.1 Attackers Machine.........cc.couiiiiiiiiiniiieeeteeeeetee ettt ettt 64
3.9 CONCIUSION. ...ttt ettt e e st e et e st e s b e e sbt e e bt e saeesabeessbeeeennbeeeenneeeanns 64
4. Chapter 4 — Research Implementation..........ccoceirierieeriieniieniienieeee st st eseeessreeessareeesaneeesaneees 65
4.1 TNETOAUCKION. c..teeitieiee ettt ettt ettt e e st e e bt e e ae e st e e s at e et e e sste s b e e saeeeabeesaeesabeeeneeenseennsees 65
4.2 Kali LINUX = TOSTET....cuveeteriietieieeieeteetestt ettt et et ettt sbe et s sae e b e st e beenesaeesaseesaneesanee 65
4.2.1 Vulnerable APT MacChines........cc.coevuieriieiniiieiniieeeite st esseeessireeseeeessiaaeeesssnseneeessssssenas 66
4.2.1.1 OWASP JUICE SHOP...eerutiiiiiiriiiienieeitecteeteeiteste ettt ettt e s e s e sneeeas 67
4.2.1.2 Completely Ridiculous API - OWASP CrAPI......ccocoviiriiiieiiiieeeeeeeeee e 68
4.2.1.3 Damn Vulnerable GraphQL Application — DVGA.......cc.cccceeiivirnernienieeieecieee 69
A.2.1.4 VAPt sttt sttt et st sa e st esae et st e e satessabeeaas 70
4.2.1.5 OWASP PiXieoutiriiriiiierientietenieesieete sttt sttt st sttt st e v stesaeesbe e seessmeesennesans 71

4.3 The API Penetration Testers Methodology........ccccveevviiiiiiiiniiiiniieeciiecrieccree e 72
4.4 Information Gathering..........ceeuiiiiiiiiiieee ettt s s abe e e s aaaeeas 73
4.4.1 API IdentifiCation........cccuierieeiieiieeieesteeie et e ete et eeteeseeeae e beessaeesseeessaesaesssesssseesnnsseens 73
4.4.2 APT Documentation REVIEW........cccccuiiiiiiiiiiiiiiieeeeeeeeeeirtee e e e e eiereessenre e s e sneeeeeenes 76
4.4.3 Authentication & AULhOTISAtION.cccviiiriiieeriieiiieeerteeereeeteeseeesreeesereeeessseaneeesesnanns 77
4.4.4 TOOL SUIMIMATYccuveiiuierieeiieeieerte et et e st esateste et esteessaesteesbeesssesseessseessaesssesnssaessnnseens 79
4.5 RECOMNAISSANCE.ceiiuiieiiiieiiiieeiteeeite ettt et e st e st esesbe e s bt e e bt e e e st e e eabaeesasaeesnsaeeesanrneeeens 79
45,1 PASSIVE....eeiiiiiiiiiitiieiteeetc ettt s st e s b e e e e 80
A.5.1.1 DOTKING..cciiuiiiiiiieeniieeiieeeie ettt st e s ate e st e e steessabeesssaeesssseessssaesssseessseessssessnnnns 80
4.5.1.2 DNS ENUMETAtION....ccccuiiiiiiiiiiiiiirieiiteiieeeereeere e e s s san e e s e sinane e e s 82
4.5.1.3 Technology IdentifiCation..........ccccevueeiuierieeiiienieciecceeeie et sve e eeaeeeas 83
4.5.1.4 Vulnerability SEarCh.........c.coocieeiiiiriiiiiiieeeee ettt 83
4.5.1.5 Discovering Historical Data..........coccuerriuieiniiieiiiieiiieesiieesseeeseeesieeesenneeeesssnnnneeas 84

A.5.2 ACTIVE. ..ttt ettt et sb e st b ettt b ettt sbt et et a e e e bt e e nnbeeeaneeeane 85
4.5.2.1 POTT SCANMIINE. ..ceetieurreererrrieeenirteeeenrteeessssteeeessseeeessssseessssssseesssssseeesssssssseeseeeessssssnns 85
4.5.2.2 Subdomain ENUMETation........ccceeterieiierienienienteieeteseeseeste st e e 87
4.5.2.3 Walking The APPliCatioN........cciecuierriieirieeeieeeiieeeiteesieeesreeesaeeesveesseeesssaeessnsnnes 89
4.5.2.4 Web Crawling — SPIidering.........ccceceerieriieinieniiienieeieente st et stee s siteessieeesseeee e 91
4.5.2.5 Technology IdentifiCation..........ccceevueeiuierieeiiieniecieereecie et sve e eaeeeas 95
4.5.2.6 Source Code Analysis — JaVaSCIIPL....ccc.eeterrerrieriirieriineerieeeent ettt 98

4.5.3 TOOI SUMIMATY ...cccouiiieitiieriieeriieerieeerteeesteessteeesieeesreessseessbeesssseessssasssssesssssesesssseseeens 100
4.6 CONLENE DISCOVEIYuvtiiiiiiiieeeeiitteeeeietee e ettt eeesrreeesesnrteesesnrteesssssaeeesassrateeessssssssssnnnssssssnnee 100
4.6.1 Subdomain Brute-FOTCING..........cceeitiiiiiieiieiniieeniiecsieeesreeesaeessseessaeeessseeesveesssnssaeeens 101
4.6.2 Directory Brut@-FOTCING......cccuutttiiiiiieieiiiieeeeieeeeeereeeeeeirteeseesreeeseenaeeeeesnneeessenneeeeeeas 101

4.6.2.1 File Brute-FOrCiNG........ccccteiriiiiiiiieiiiieeciteeteeeiteesieeesteeesaeessaaeeesaneessssnnvneesssnnnns 103

4.6.3 ENAPOINt ANALYSIS...cutiiiiiriiiiieeieeieeieertee ettt ettt et s bt st e s br e e e sabaeeeaee 104

4.6.4 APT VETSION DISCOVETY......viiiiiiiiieeiiiiieeeeeiiteeeesitteesessteeeessiseeessssseeessssseeesssssseeeesssssnnns 107
4.6.5 Parameter FUZZING......cccoovuuieiiiiiiiiieiiteeeeieee ettt e s et e e s s sae e s seareeesseneeeesesnsneeees 107
4.6.6 TOOI SUMIMATY ...ccccuiiiiiiiieiiieerieeerieeerteessteessteesteeesbeeesareessseesssseessssasssssessssseessssssseeeas 108
4.7 Vulnerability and Misconfiguration Scanning — Automated...........cc.cceeeveeerrveeerireeensieeeenne 109
4.7.1 TOOI SUMIMATY ...cccouiiieitiieriiieeriteenieeesteeesteeesteessteeessseeesseesssseesssseessssesssssesssssesesssnseseeens 109
4.8 APT ANQALYSIS. ..ceetiiiiieiieiieeie ettt ettt ettt ettt ettt e e at e st et e s be e ateebeesaaeebaeaees 110
4.8.1 Broken Object Level Authorisation - BOLA......cccccoiriiiiiiiiinieeciecceeee e e 110

5. Chapter 5 = TOSHNE.ieeieeiiieieeiteeteett ettt ettt e et e st e st e st e e saesabeesaeesaseesssesaseenseesasesnses 121
5.1 INTOAUCTION. ...cutteiieeieeeite ettt sttt e et e st e st e e bt e saee s beesae e e bt e saeesabeesneeenseennnees 121
5.2 Testing ENVIrONMENT SETUP....cccccoutttriiiiieeieiiiteeeeieee et eeerrteeeesnreeeseenreeesesnraeesssneaeeesseens 121
5.3 Application of the API Penetration Testers Methodology..........cccceevueerieeviiieniiieeniieeeeenen. 122
5.3.1 Information Gathering..........ccoeoieriiiiieriieieeeete ettt st 123
5.3.1.1 APT IdentifiCation.....c.ccccueeeieeieeiiieeieesteeieeste e e et e e te et eeaeeseaeese e sbaeeesnsneeensneeas 123
5.3.1.2 Documentation ReVIEW.........cooviiiiiiiiiiiiiiiiiiiiiciiccreccreecreceree e 124
5.3.1.3 AuthentiCation ANALYSIS.......ccueierieirriieeriiieerieeerreesrreesrteessaeeesreessreesssseessaneessseeens 125

5.3.2 RECONNAISSANCE.ccouviiiiiiiiiiiiiiicceite ettt re e bt s e e aae e e s anne e e e seanns 127
5.3.2.1 POIt SCANMINE.....uuvieiiriiiieiiiitieeeeritteeeesiteeeesitteeeesssteeeesassaeessssstraaeeeaeeeeessssssssssssnses 128
5.3.2.2 Technology IdentifiCation..........ccocueerierrieriieirieniecteeee ettt 128

5.3.3 CONENE DISCOVETY.....uueiieiieiiiieieiiiieeeeritteeesiiteeeesiteeessssreeesssstteeesssseeesssssseesssssseeesssssnes 129
5.3.4 ENdPOINt ANALYSIS. . .eeectiirierieiriieeitterie st esite et esiteete et este e st e sate s st esseessbaessnbaesssseesnns 129
5.3.5 Vulnerability SCaNNING.........ccccvtiriiiiiriiiiiiiieeriteeie e eerre et s e e sreesraeesaaeesrseeeeeens 130
5.3.6 APT ANALYSIS. ..eeutiiuiiiiiieiteeiteteetere ettt ettt sttt st a e st be et besnee s 131
5.3.7 EXPLOIMAtION....ciiitiiiiiieiiiieecteeecteeeite e eee st e e st e e st e s s teesssbeesssbeesssseesseeesssneesssseasssnnns 133

6. Chapter 6 — Discussion and CONCIUSION..........cccuieriiriiiinieriiete ettt 135
6.1 INITOAUCTION. ...ttt ettt ettt et et e et e s st e s bt e st e et e e saeesaseessbeeaseesneesbeennneenee 135
6.2 RESEAICH CONIEXL....ccueeurieuieriiiieriteniteteet ettt et ettt eie et et e sst et e b sae e bt sanesseesbeenseessmeessnneenns 135
6.3 HypOothesis REVISITEA.ccccuiiiiiiiiiiieeiieeeieeeteest ettt ste e este e e ae e e saae e e s s s esaaeeeesnsannneeas 135
6.4 Recap of The Literature REVIEW.........ccovuiirieriiiiieiieeteeieete ettt ettt e s e e 135
6.5 Research Methodology OVEIVIEW.........cccuiiiriiiiiiieiiieeeieeeiteesiteessieeeseeeessssaareeesesssnnseeesens 136
6.6 Research Implementation OVEIVIEW..........ccevierieriuienieriiienieeieestessieesteesseessessseesseesseesnns 136
6.7 Testing and ReSultsS SUMMATY.........ccieviiiiieeriieieieereeestee et eaeesee e svee e reessaeessanaeeas 137
6.7.1 EffOCTIVENESS.....eeouiiiieieeieciteeeeet ettt ettt et be et s st e snee s 137
6.7.2 Limitations and Challen@es............ccceeeeiiiriieiriieiniieeniteseee st esreesseeesseeessaaeessanaeee s 137
6.7.3 Areas fOr IMPIOVEIMENL.ccc.ciritiriierieeiteeieeieeete et e s te et e s teesatesaeessbeeessaraeesnreeesnneas 137
6.7.3.1 EXPANd tESTING......ceevcueeriieiriieeniiteenitesrteessteeesteessaeeessaeessaeesssaeessssessssseseessssssseees 137
6.7.3.2 Modularise the Methodology...........coceeriiiiiiiniiniiiieeiteteceere et 138
6.7.3.3 Documentation & Note TaKing.........ccceevveiriieiniiieiniieenieeerieeeriree e e s eree e e e 138

6.8 Research RefleCtiONS........cccueeiiriirienieiieienitceeteet ettt ettt et s sae s 138
5.8.1 ODJECHIVES. ..ecuuviieriieeeiiteeiieeeiteeette e st e e st e e siteeesae e e tbeeesaeessaeesssaeensseessssaesnsseesssseesssseeens 138
6.8.2 FINAINGS. .. eeverureieetieieeiterteeteee ettt ettt et sb et et a et e e b e b sae e bt e b e sseenbesnee s 141
6.8.3 CONLTIDULIONS. ... eeeiieeteeeiteeteeete ettt ettt ettt et e st e e bt e st e bt e s e e e bt e saneeeaneee 141
6.9 Recommendations for FUtUre WOTK...........cooieriiiiniiniiiieeieeteecete sttt e e 141
6.10 Dissertation Research Project CONClIUSION.........ccccviiirieiriieeeiieeeiieese et eesve e e e e 142
RETEIOIICES. ...ttt sttt et e a e bt et s et e sab e e s abe e e b e e sneeeas 144
F N 0513 116 1 OO O SRS P PP RRPPRPPN 158
Appendix A - Ethical Approval ApPliCation.........ccceevieiriiiriiiriierieeeeeeeteee e 158
Appendix B - Hacking Guides and Methodologies...........ccccceereueerrieeiiiieeiiiieeniieeeieeesineeeeeeens 160
APpendix C = XIMING.....ccceiiieriiieiienieerteeieerte ettt e steesieeste e stesbeesseesatesssaessseessaesaseenseens 161
Appendix D - GIamMIMAT]Y.......ciiiiieiiiieeiieerieeete et e esreessteeesre e e aeessaseessaeesseessssssseeessnnnns 161
APPENdiX E - POSTMAN. ...c..utiiiiiiieniieeiienie st enite st este st e st e steesttesteesstessbeesseesssesssaesssneesssnsaeesnns 161

Appendix F — Recon AutOmation SCTIPLS.......c.ceerueirteriiernteeiieeneeeieenite et et eeeesiree s sieeeeeneee e 162

Appendix G — Bug Bounty Responsible Disclosure Reports...........
Appendix H — API Specific penetration testing tools and resources

1. Chapter 1 - Introduction

1.1 Background and Context

Application Programming Interfaces (APIs) are commonly used to communicate with third-party
services and transfer data and can be found in IoT devices, vehicles (Lakshmanan, 2023), mobile
applications, financial services and more. APIs can pose a significant risk to organisations, as we
have seen from data breaches where the attack vector was the targeting and exploitation of the
organisation's API. It was reported that 83% of all web traffic on the internet is related to APIs
(Mathur, 2020), and two-thirds of all cloud breaches were due to misconfigured and exposed API
secrets (keys and tokens) (IBM Security X-Force Threat Intelligence, 2021). Gartner predicted in
2021 (Novikov, 2022) that by 2022, the targeting and exploitation of API vulnerabilities will
surpass any other form of exploitation attacks and become the dominant vector for attacks to steal

data and cause a data breach incident.

In light of these statistics and the knowledge of how much of significant risk APIs can pose, we
seek to develop a robust and thorough API penetration testing hacking methodology which will
serve as a framework for penetration testers and developers to become aware of the risks and
measures that they should take to better secure their APIs through secure coding practices to

offensive security testing.

Although there exists already penetration testing methodologies (HackerOne, 2022) for web
application hacking (NahamSec, 2020) and cyber criminal hacking writeups (see Appendix B), most
ethical professionals do not openly share their hacking methodologies either because it is making
them good money in bug bounties or professionally or because they might think they are not good
enough to add value with sharing their methodology. There currently does not exist a similar

innovation for API hacking in terms of a robust methodology, and this is the gap we seek to fill.

1.2 Problem Statement

Penetration testers are unaware of the differences between web applications and API hacking. This
was made clear in the Inspector General USPS penetration test report (Inspector General, 2018),
where the testers used web application penetration testing tools and techniques to test USPS APIs,
which they returned with a verdict that they identified some minor issues however, nothing
significant, later in 2018 it was reported (Krebs, 2018) that there was found to be a critical

vulnerability within the API that leaked over sixty million user accounts publicly (Avertium, 2022).

Our research project aims to close the knowledge and skill gap between web application and API

hacking to inform security testers and developers and make them aware of the differences and

significant risks that APIs can pose to organisational data. This point is driven home by Stateofapis

(Stateofapis, 2022), who surveyed developers, and it found that only 4% of all respondents stated

that they would security test their APIs (see Figure 1).

API hacking is new, and there is not much literature or practical labs that focus on training

individuals (TryHackMe, n.d) to learn how to hack APIs or teach others how to approach hacking

APIs and what to look for during their testing. There is no standard API hacking methodology

others can learn from, take and build upon to further their penetration testing, bug bounty or

contract penetration testing engagements.

All responses Organizations in Financial Services

92.7%

of respondents test
their APls, or plan
to

Are we using tools for API testing?
Yes
| write tests in my code

No, but | plan to

No, and | don't plan to

No, and | don't know what
API testing is

Organizations in Telecommunications

What types of API testing are we doing?

Functional Testing

Integration Testing

Acceptance testing

Performance Testing

Load Testing

Security Testing

Workflow Testing

Other

Organizations in Healthcare

85.7%

of respondents test
their APIs, or plan
to

Figure 1: Stateofapis developer survey (Stateofapis, 2022)

1.3 Rationale for the Study

The focus of this research is to develop a thorough API security-specific penetration testing
methodology to ensure the security of an API. We believe that by creating a robust and thorough
API penetration testing methodology that follows all the latest security trends in the field, we can
deliver a methodology that security testers can use proactively to effectively penetration test APIs
and provide the client and themselves with the assurance that they have tested thoroughly, identified
possible vulnerabilities and or have validated the currently implemented security controls. The idea

is to provide a deliverable you can use out of the box or build upon to better test APIs and clearly

show the difference between web application security assessments and API penetration testing

engagements.

Data breaches used to occur commonly due to low-hanging fruit vulnerabilities such as sequel
injection (SQLi) (Rahman, 2012), local file inclusion (LFI), remote file inclusion (RFI) and remote
code execution (RCE), as was seen with Sony (Kumar, 2011), X-Factor (Arthur, 2013) and
RockYou (Cubrilovic, 2009). However, in the past decade, large-scale data breaches have occurred

due to exploiting API vulnerabilities and misconfigurations (see Table 14).

1.4 Research Question

Our primary research question, which underpins the following research dissertation project, is how
API penetration testing can be conducted effectively to improve the security posture of APIs and
prevent data breaches by exploiting API vulnerabilities. We aim to answer this question by
developing a penetration testing methodology and performing testing using the developed

methodology and analysing the test results to assess how effective it is and whether it works or not.

1.5 Research Hypothesis

We hypothesise that implementing an effective API penetration testing methodology will
significantly enhance the security posture of APIs and reduce the risk of a data breach by means of
reducing the attack surface and discovering vulnerabilities before the threat actors do (Kumar,

2019).

1.6 Objectives of the Study

The core research objectives that we seek to achieve by the end of our research are as follows:

Main Objectives Reason

Develop a robust and thorough API penetration |To stunt the progression at which we see data
testing methodology. breaches occur because of API exploits, we need
to develop and provide testers and developers
with a methodology to test their APIs better and
learn common attack vectors favoured by threat
actors so that the tester can discover the same
vulnerabilities as the threat actor. This would

result in a more secure API security posture and

reduce the opportunity for attackers to cause a

data breach in the organisation.

Identify the most prevalent API-specific

vulnerabilities.

To ensure that we can effectively test and secure
APIs, we need to be aware of the most common
and critical vulnerabilities that APIs can be
exposed to so that we can look for them during

our testing and remediate them.

Identify the key tools to use in the methodology.

Similar to identifying the most critical
vulnerabilities to which APIs can be exposed,
we need to source the correct tools, services, and
resources to use during our testing to streamline
our tests specifically to APIs. This ensures we
discover API vulnerabilities and reduces the
chance of discovering false positive web
application vulnerabilities. Also, tools designed
for web applications may not work when used
on APIs because they differ in design and

architecture.

Research penetration testing tips and tricks

relevant to API hacking.

When reading through our sourced body of
literature (see Table 5), bug bounty reports (see
Appendix G) and methodologies (see Table 16,
we need to analyse and identify relevant tips and
tricks that can commonly work against most
APIs and are good areas to quickly cover to
ensure we find low hanging fruit vulnerabilities
before delving deeper into the test ensuring good

ground coverage throughout the penetration test.

Cover the walk-through of at least one

vulnerability and show it’s impact.

Broken Object Level Authorisation (BOLA) is
currently (2023) the most common and critical
API vulnerability (OWASP, 2023) that results in
the biggest impact when exploited. For this
reason, we will prioritise its demonstration in

our implementation.

Demonstrate how to set up the testing

environment.

To test our implementation and provide practical
demonstrations through the methodology for
clarity, we will set up a virtual testing lab, which
will use VirtualBox to isolate the machines and
the network. This also ensures ethical
compliance for the ethics committee (see
Appendix A). The machines that will be used
will be vulnerable API machines to perform
testing against, and we will test from a Kali
Linux machine, making it clear who the tester

and server are.

Ensure the methodology is reproducible and

actionable.

To ensure that the methodology can be
reproduced and to allow readers not to have to
read through the whole methodology each time
they want to refer back to something relevant to
their specific engagement, we produce a tool
and cheat sheet table with all the commands and
tools used during the methodology with tips and

tricks.

Understand why APIs are commonly being

targeted in attacks.

Attackers are looking for the path of least
resistance when looking to steal data. Threat
actors commonly look for the easiest way into
your networks to steal your data and then sell it
or publicly leak it for reputational points on
forums (Zoltan, 2022). APIs are increasingly
becoming the target of attacks because they have
direct access to data and backend services.
Commonly, organisations have poor visibility
into how many APIs they have, how many are in
use and how many are just sitting on their
infrastructure, deprecated and no longer in use

(zombie API).

Allow readers with varying skills and experience

to understand the concepts shown throughout the

The methodology was designed to be useful for

experienced testers and as an educational

methodology. resource for those inexperienced wanting to

learn API hacking.

Table 1: Core Research Objectives

1.7 Scope of the Study

The following research scope is limited to API hacking, techniques, skills, tools and two particular
APIs, RESTful and GraphQL. The research does not cover hacking or exploiting network service
vulnerabilities (CISA, 2023) or web applications (OWASP, 2021), only APIs and their
vulnerabilities (OWASP, 2023) and misconfigurations.

1.8 Limitations of the Study

Throughout our research project, we anticipate possible limitations to the study, such as lack of
tooling that we can use specifically to test APIs due to a lack of tool development, lack of
actionable literature that focuses on penetration testing APIs and exploiting vulnerabilities
(Apisecurity, n.d), the sample size of vulnerable API virtual machines, we also anticipate that since
the research project is academic and therefore will need to adhere to ethical agreements (see
Appendix A), this means that practical testing can only be conducted in a virtualised environment
and as such not all aspects of the API penetration testers methodology can be explored and

practically demonstrated.

1.9 API Hacking Methodology Overview

In Figures 2, 3 and 4, we lay out the structure of the API penetration tester's methodology and show
how each stage follows into the next. In the methodology, we focus on REST APIs as they are the
most commonly used and implemented in most applications; however, we also cover GraphQL as

its popularity is steadily increasing in adoption.

The Web API
Hackers
Methodology

fidentityfapifv2fuser/dashboard
fworkshopfapilshopfproducts
RESTful
fidentityfapifv2fuserfpictures
feommunityfapifv2/couponfvalidate-coupon
Web AP Identification
fgraphgl
faraphigl
GraphQL
M1/graphgl
M2{graphgl

fdocs

fapidocs

[/developersfdocumentation
Information Gathering API Documentation Review
/api/documentation

fapi-docs

docs.target.com
Mo authentication
Json web tokens (IWT)
APl Keys

Authentication & Authorisation HTTP Authentication

HMAC
Oauth

Bearer token

Figure 2: Information gathering process

~ sitertarget.com inurl:"/api/"

sitetarget.com inun:/apifvl OR inurl:/apifv2 OR
[inurl:/apiiv3

~ Google = https:/Mww.google.com == site:target.com site:api**
I sitertarget.com inurl:fapildocs”

I inurl:oraphgl OR inurl:/graphig|

. site:*target.com inurl"7api_key=" OR inurl:"?
~ Dorking — L“tol:en="
[— GitHub —— hitps:/igithub.com/search

[~ Shodan — hitps:/fwww.shodan.io

r@‘ *— Censys — https:/fsearch.censysio

— DNS Enumeration —— DNS Dumpster — https:/fdnsdumpster.com

*— Technology Identification —— Built With —— hitps:/builtwith.com

== \ulnerability Search = exploit-db =—— https:{fwww.exploit-db.com

“— Discovering Historical Data —— The Way Back Machine —— https:ffarchive.org
https: igithub.com/nmap/nmap

— Port scanning —— nmap
hittps: /lgithub.com/dolevifnmap-graphgl-

introspection-nse
Reconnaissance
Subfinder — https:figithub.comprojectdiscoverysubfinder

Amass —— hittps:/igithub.com/owasp-amass/amass
}— Subdomain Enumeration Sublist3r — https:figithub.com/aboul3la/Sublist3r

crt —— hitps:/lort.sh

Dorking — site;™ target.com”

https:/fwww.mozillaorgfen-

RIS loperiods Usffirefox/developer
W—— ‘Walking The Application

Burpsuite — https:/portswigger.net/burp

https:ffwww.zaproxy.org

https:ffwww.zaproxy.org/blog/2020-08-28-
introducing-the-graphqgl-add-on-for-zap

I~ Web Crawling — Spidering —— Zaproxy {

Wappalyzer —— https: fwww.wappalyzercom
I~ Technology Identification Whatruns — https:fwww.whatruns.com

WhatWeb —— hitps:figithub.com/urbanadventurer/What\Web

hittps:fiwww.mozilla.org/en-

— is — int —— —
Source Code Analysis — JavaScript FireFox Developer Tools LS firefoxkiewsioper

Figure 3: Reconnaissance - Passive & Active

~~ Subdomain Brute-Forcing -

L= Directory Brute-Forcing

- Parameter Fuzzing

Vulnerability and Misconfiguration
Scanning — Automated

GoBuster https:/github.com/Ol/gobuster

~ GoBuster —— https:/igithub.com/OJ/gobuster

~— Kiterunner https:/igithub.com/assetnote/kiterunner
~ json
xml
File Brute-Forcing File extensions —{— .yaml
aql
I~ Endpoint Analysis — Ffuf https:/igithub.com/ffuffffuf
~— fapifvl

= API Version Discovery —— /apifv2
fapifv3
- https:/fgithub.com/ffuf/ffuf

- FUZZ=123

@& Automated Vulnerability Scanning Nuclei https:/github.com/projectdiscoveryfuclei

https:/lowasp.org/API-

Web API Analysis (51 Broken Object Level Authorisation —— BOLA —— Securityfeditions/2023/en/0Oxal-broken-object-
level-authorization

Figure 4: Content Discovery, Vulnerability Scanning & API Analysis

1.10 API Vulnerabilities - OWASP TOP TEN

There exists a list of the most common and critical vulnerabilities that APIs are commonly exposed

to by the OWASP foundation (OWASP, 2023).

OWASP API TOP TEN Vulnerability

1 API1:2023 - Broken Object Level Authorization

2 API2:2023 - Broken Authentication

3 API3:2023 - Broken Object Property Level
Authorization

4 API4:2023 - Unrestricted Resource
Consumption

5 API5:2023 - Broken Function Level
Authorization

6 API6:2023 - Unrestricted Access to Sensitive

Business Flows

7 API17:2023 - Server Side Request Forgery

8 API8:2023 - Security Misconfiguration

9 APIS:2023 - Improper Inventory Management
10 API10:2023 - Unsafe Consumption of APIs

Table 2: OWASP API TOP TEN Vulnerabilities (OWASP, 2023)

1.11 Conclusion

The following research dissertation project aims to fill the gap in API penetration testing by

developing a methodology for penetration testing both REST and GraphQL APIs using various

environments, tools and techniques. The methodology will primarily cover how to map your target's

attack surface, as it is the most essential stage of any penetration test. However, towards the end, we

will cover one main vulnerability class, showing the reader how to discover and exploit Broken

Object Level Authorisation (BOLA) (OWASP, 2023).

2. Chapter 2 - Literature Review

2.1 Introduction

We seek to evaluate different sources of literature, respected and widely recognised cyber security

blog articles and researchers, news outlets, and white papers from different cyber security

companies and foundations that research API security, vulnerabilities, penetration testing and have

done real-world penetration tests against organisations and businesses as apart of their research.

This literature review is made up of different thematic groups, these include:

Literature Themes

Description

API security

Focuses on the general security posture of APIs

and their commonly attributed threats.

API vulnerabilities and exploitation

It focuses on the key vulnerabilities that APIs

are exposed to.

Data breaches (Keary, 2023) where APIs were

exploited and used as the initial access vector

Real-world case studies (see Table 14) showcase
the threat APIs can expose to an organisation,
highlighting the significant data breaches due to

API vulnerability exploitation.

Penetration testing and ethical hacking

Look at penetration testing from a general
perspective, how it is used and what it can be
used for and then focus on ensuring all testing is

conducted ethically.

API development and secure coding practices

It focuses on preventative measures to better
secure APIs before they are deployed into a
production environment to weed out low-
hanging fruit vulnerabilities commonly

exploited to facilitate large-scale data breaches.

Table 3: Thematic groups of sourced literature

We need to understand API technology, how APIs work and how they transfer data such as format

and protocol, which API architectures we will focus our research on (REST & GraphQL), how we

will develop the methodology and know what to include, the tools, techniques, methods and skills

required to adequately test API security, identifying the existing penetration testing methodologies

(not specific to APIs), the existing tools, identify data breaches that were caused due to API

exploitation and how the attack vectors were exploited and research how ethical hackers have

discovered API vulnerabilities in the wild and ethically reported them to the vendor (Bug Bounty

Responsible Disclosure Reports (see Appendix G)).

Table 4 outlines the research question, the rationale and the research hypothesis.

Research Question | How can API penetration testing be conducted effectively to improve API

security and prevent future data breaches?

Rationale The focus of this research is to develop a thorough API security-specific

penetration testing methodology to ensure the security of an API.

Hypothesis Implementing an effective API penetration testing methodology will

significantly enhance the security of APIs and reduce the risk of data breaches.

Table 4: Research Question, Rationale and Hypothesis

Table 5 showcases the literature that has been sourced and their key research findings. Each piece of

literature is directly relevant to API security, vulnerabilities and research where the discovery and

exploitation of APIs have shown what level of risk they pose, as seen in Alissa Knight's research

(Knight, 2021), where she was able to exploit Broken Object Level Authorisation (BOLA)

(OWASP, 2023) in APIs to transfer money in and out of accounts from banks and cryptocurrency

exchanges.

Literature Sourced

Thematic Groups

Key Research Findings & Contributions

Hacking APIs: Breaking Web
Application Programming Interfaces

(Ball, 2022)

API Vulnerabilities and

Exploitation

Hacking APIs walks an ethical hacker
through setting up a lab, tools and
resources (word lists) and then walks
the reader through multiple common
attack chains for APIs. It is the most up-
to-date regarding discussing and
walking you through all the stages of an
API-specific penetration test,
showcasing tools, resources, tips and
tricks throughout with a customised
word list developed by the author,
which we also use in our

implementation (see Table 18). Books

like Ball's exist for web applications,
such as The Web Application Hacker's
Handbook (Stuttard, et al. 2011);
however, until the release of Hacking
APIs, none have existed for APIs
specifically except for some comparable
literature (see Table 6), and we are now

seeing more being released.

Black Hat GraphQL: Attacking Next
Generation APIs (Farhi, et al. 2023)

API Vulnerabilities and

Exploitation

Black Hat GraphQL is a first of its kind
where you have a book dedicated to
hacking GraphQL APIs and covers all
the main aspects of GraphQL
enumeration and exploitation. A key
contribution by the authors for our
implementation in Chapter 4 is a nmap
scripting engine (NSE) script for
GraphQL introspection detection made
by the book's authors. The authors also
developed the damn vulnerable
GraphQL Application used in our
testing (see Table 18/Figure 12).

Bug Bounty Bootcamp: The Guide to
Finding and Reporting Web
Vulnerabilities (Li, 2021)

Penetration Testing and Ethical

Hacking

Though this book primarily focuses on
bug bounty programs and how to hack
them, it also heavily focuses on web
application hacking and penetration
testing different aspects of web
applications. Though we could apply
some stages to API hacking, our focus
here is on Chapter 24, which briefly
touches on how to hack, where to look
and some tools and techniques to use in
hunting for and hacking API
vulnerabilities. The main contribution of

this book to us was the mention and

reference to the OWASP zaproxy add-
on to GraphQL endpoint introspection
(see Table 18), which we demonstrate

the use of in Figures 37-38.

SCORCHED EARTH: HACKING
BANKS AND CRYPTOCURRENCY
EXCHANGES THROUGH THEIR
APIS (Knight, 2021)

API Vulnerabilities and

Exploitation

SCORCHED EARTH is an excellent
piece of literature and a significant
contribution to our research project as it
demonstrates the exploitation and
severity of Broken Object Level
Authorisation (BOLA) vulnerabilities
(OWASP, 2023), which allowed the
researcher (Knight, 2021) to transfer
cryptocurrency coins and fiat currency
out of bank accounts and wallets she did
not own, nor did she have authorisation
or authentication to do so. The main
takeaway for us was using an
intercepting proxy, which was both
Burpsuite and Postman (see Appendix
E), which was used to discover the
vulnerabilities within the requests and
responses of the API she was testing.
The research also found that the same
developers reused their code (recycling
of code) across various banks, allowing
her to hack an additional 50 banks.
Knight found broken authentication and
authorisation vulnerabilities in every
penetration testing engagement,
highlighting the vulnerability's severity
and the impact it can have on financial

institutions.

A Guide to API Security (Cloudflare,
2021)

API Security

Cloudflare, a content delivery network

provider, provides not only load

balancing and server distribution to
thwart distributed denial of service
attacks (DDOS) and standard denial of
service attacks (DOS) but also
implements a web application firewall
(WAF) to help thwart web application
vulnerability exploitation by means of
malicious payload injections. From
2021 onwards, Cloudflare released their
API shield, a WAF for APIs which
seeks to protect against specific API
attacks, as highlighted by their
incorporation of logic-based
vulnerabilities using OWASP top ten as
a key source. The whitepaper also
discusses real-world security incidents
specific to APIs in the case of T-Mobile
(Bicchierai, 2017), Facebook (Spring,
2021) and Justdial (Kumar, 2019),
which not only highlights the risk APIs
pose due to large organisations suffering
from the vulnerabilities APIs can expose
but also helps us further develop our
methodology as we can look for
common attack vectors adopted by
threat actors to exploit APIs in order to

simulate a real-world attack.

OWASP API Top Ten 2023 (OWASP,
2023)

API Security

The OWASP top ten for APIs is a
collection of the ten most common and
critical vulnerabilities to which APIs are
exposed. They also have a top ten list of
web application vulnerabilities. A
critique of the list is for web

applications. The naming convention

makes sense in categorising the
vulnerability types; however, they
renamed them for APIs even though the
vulnerabilities mostly remain the same.
An example of this is highlighted with
Broken Object Level Authorisation
(BOLA), which is Indirect Objection
Reference (IDOR) for web applications.
It is the same vulnerability type with a
different name. This could confuse and
cause people to learn new naming
conventions for the same vulnerability,
increasing efforts in learning and
conveying to clients with little return.
However, the top ten highlights the ten
most critical vulnerabilities for APIs and
is a great resource to use when wanting
to know the general attack surface of
APIs and what to look out for during a
penetration test. No frameworks
compare regarding API-specific
vulnerabilities, but other vulnerability
and attack frameworks exist, such as
NIST and MITRE ATT&CK (see Table
13).

API and Shift Left Security With RSA
Conference Wrap (Futuriom, 2023)

API Development and Secure

Coding Practices

The RSA report focuses on API security
risks and their increased prevalence by
showcasing and providing remediation
steps for BOLA, Injection attacks,
Shadow IT and Zombie APIs
(undocumented/forgotten about assets)
and securing the API development
process. The remediation advice for

protecting against and preventing

BOLA is to validate user permissions to
access the resources of other users
resources, implement unique resource
identifiers (UUIDs) and implement
correct authentication mechanisms. The
paper also discusses the shift left
mindset of integrating DevOps and
SecOps into the development lifecycle
to secure during their development
before they are deployed into
production environments. The paper
also highlights API exploitation data
breaches to emphasise and showcase the
real-world risk APIs can pose as they
are used to power our digital world in
providing third-party access to services

such as Al

OWASP API Security Top 10: Insights
from the API Security Trenches (SALT,
n.d)

API Security

SALT security’s whitepaper, which
focuses on the OWASP top ten for APIs
(OWASP, 2023), not only provides an
in-depth analysis of each vulnerability
class and raises awareness by analysing
the top ten list but also follows that up
with practical, real-world examples of
where those vulnerability types were
found in enterprise applications in the
wild and the consequences they had or
could have had as ethical security
researchers first discovered some of the

incidents.

Understanding API Attacks: Why are
they different and how can you stop
them? (SALT, n.d)

API Security

This paper highlights the need for API
security, the growing prevalence of data
breaches (Isbitski, 2021) as a direct

result of vulnerability exploitation in

APIs and the reinforcement of Gartner’s
prediction (Novikov, 2022) that by
2022, the rate at which APIs will be
exploited will surpass any other type of
exploitation method facilitating large
scale data breaches. The paper
contributes a significant amount of
detail and emphasis on the importance
of shadow IT, as SALT finds that many
organisations don’t have clear visibility
into where and how many APIs they
have or are even using. The paper also
covers initial access vectors favoured by
cyber criminals when looking to exploit

and exfiltrate data via the API.

API Security Best Practices (SALT, n.d)

API Security

API Best Practices for better securing
APIs white paper covers insufficient
logging of events, secure development
life cycle for securing code during
development to reduce vulnerabilities,
securing not only the backend
infrastructure but also the frontend
(client-side) squashing logical-based
vulnerabilities and client-side
vulnerabilities such as cross-site
scripting. The need and importance of
security testing the API once deployed,
data security protections, network level
security and visibility, and
documentation where the company
might not know how many APIs they
have (insufficient asset management) or
how to use them. The paper highlights

the most important steps that an

organisation and their developers must
consider to protect and maintain their

API security posture.

How Shift-left Extremism is Harming

Your API Security Strategy (SALT, n.d)

API Development and Secure

Coding Practices

The paper discusses Shift-left
Extremism, which implements security
controls and revisions earlier in the
development life cycle to find and
remediate bugs within the code base and
final product before rolling out the
product to the live production
environment. The paper underscores the
need to shift left earlier in the
development life-cycle of an API than
what is normally required to discover
vulnerabilities earlier in the
development process. The paper
emphasises that it is simply not enough
to rely on automated vulnerability and
fuzz scanning code and applications to
discover potential threats in the design
and function of an API and introduces
specialised Application Security Testing

(AST).

Protecting APIs from Modern Security
Risks (SALT, n.d)

API Security

Securing APIs from modern security
risks is a valuable contribution to the
API security field. It offers a reason for
prioritising the need to secure your APIs
as their prevalence and reliance increase
yearly, and more services rely on APIs
to transfer data and requests. The paper
identifies many challenges to securing
APIs as each API is not standard, is
custom to the business using it

(parameters, endpoint structure and

function) and not one API is the same as
another, which makes universal security
best practices hard to implement. The
paper also advocates for a shift-left
mindset of better securing the
development lifecycle of the API
instead of security being an afterthought
after development. It also emphasises
the need for monitoring as many APIs
are not included in proper security
controls, including monitoring and
logging API events to detect application
problems or potential attacks to thwart
attackers probing and exploiting.
Crucially, the paper highlights that by
using web application firewalls, the
organisation trying to defend itself is
doing itself a disservice as it cannot
detect logic-based exploits and thwart
attacks that do not follow the typical
standard payload injection workflow of

standard exploit attempts.

Mapping the MITRE ATT&CK
Framework to API Security (SALT, n.d)

Penetration Testing and Ethical

Hacking

MITRE ATT&CK is a common
framework for categorising and
highlighting threat actors' tactics,
techniques and procedures (TTPs) and
the tools they employ to breach
organisation networks, exfiltrate data,
laterally move across a network and
persist access. There does not yet exist a
framework for common TTPs for API
threat actors and the common TTPS
they use across various data breaches,

specifically those who seek to exploit

APIs to facilitate data exfiltration and
account takeover attacks. The paper
highlights this research gap and seeks to
employ the current ATT&CK
framework to build a relationship
between the framework and API
security. The paper uses the OWASP top
ten list for APIs and takes critical
vulnerabilities commonly exploited in
the wild, such as BOLA, to achieve this.
The proposed framework by SALT is a
valuable contribution to the field as it
seeks to take OWASP's work, build an
attack framework from it, and use real-
world examples of where the
vulnerabilities have been previously
exploited to build a TTP map. The
benefit of this research is that it creates
practical awareness for organisations to
learn about common attack vectors to
build proactive and preventative

measures for defence.

API Security in Action (Madden, 2020)

API Security

Contrary to other API hacking literature,
Madden includes chapters for securing
APIs in IoT devices, microservice and
service-to-service APIs and secure
developer code practices for API
development. The book, unlike Cory
Balls (Ball, 2022) and Aleks and Farhi
(Farhi, et al. 2023), comes from a
software developer perspective and
builds upon the principles of the shift-
left mindset of securing the code base

and thinking about the security of the

application throughout the development
lifecycle instead of at the end before and

during deployment.

The API Security Disconnect (Noname, |API Security
2023)

Authored by Noname Security, it
focuses on the latest security trends in
not only the common type of attacks
that APIs face in the real world but also
the current attitude from organisational
leaders and security teams towards API
security, with their respondents
admitting that as data breaches increase
due to API exploitation so does the
awareness of the significant risk that

APIs can pose to an organisation, its

data and their customers.

Table 5: Key findings and contributions of sourced literature

Comparable literature

Description

Understanding API Security (Richer, et al.,
2016)

The book highlights the increasing reliance and
the significant role of APIs in our ever-
expanding digital world. The literature
emphasises that the need for secure and stringent
security controls has never been greater in a

world increasingly reliant on APIs.

API Security for Dummies (Freeman, 2020)

Understanding API Security is a book that
focuses not on penetration testing but on secure
code practices and understanding APIs from
architecture, documentation, and communication
protocols to legacy APIs. The literature takes the
shift-left perspective and DevOps in API
security to ensure the security testing process is
taking place throughout the development life
cycle of the API in order to identify and resolve
security issues before software deployment. The

book covers the main aspects of API security,

emphasises on not making security testing an
afterthought as it commonly is and covers
injection attacks, creating protection firewalls,
monitoring and alerting on events, DevOps,
cloud migration and understanding how APIs

work.

Salt Security Special Edition. API Security for | Though this piece of literature is within the
Dummies (Isbitski, 2023) accepted date range for our literature sourcing
(2020 - 2023), they use the older version (2019)
of the OWASP API top ten list. So, it was
excluded from our literature review as the
current standard has been updated for 2023.
However, they do an excellent job
differentiating the differences between API and
web application attacks, which is crucial, as
highlighted by the USPS penetration test report
(Inspector General, 2018) and subsequent data
breach due to the lack of this awareness (Krebs,

2018).

Table 6: Comparable literature to Table 5

2.2 Theoretical Foundations

Identifying and understanding the core concepts underpinning API security will be a fundamental
building block for developing the API penetration testing methodology. We found that the following

foundations are of most relevance:

Concept Description Relevance

The Confidentiality, Integrity, |The CIA triad represents the The CIA's relevance to API

and Availability Triad (CIA three most important objectives |security and penetration testing

Triad) (Irwin, 2023) a penetration tester should ensures the systems and
consider throughout testing. applications being tested are not
The confidentiality and damaged or made unavailable

integrity of data on the systems |to not disturb the organisation's

they are testing, the availability |day-to-day operations and to

of the data and the systems
being tested against. A
penetration test should consider

all three pillars and abide by

ensure compliance with data
protection laws (see Table 15)

and data integrity.

them.
The Cyber Kill Chain The Cyber Kill Chain is a The cyber kill chain lays out an
(Lockheed Martin, n.d) process in which an offensive |attack plan from start to finish

attacker takes from start to
finish from performing
reconnaissance, weaponisation,
delivery, exploitation (initial
access), installation
(persistence), command and
control (post-exploitation) and
actions on objectives (data

exfiltration).

throughout an offensive
operation that seeks to go
unnoticed and to fully
compromise a target,
maintaining access for as long
as possible. We will be thinking
about the kill chain to form the
structure of our API hacking

methodology.

Defense in Depth (Cloudflare,
n.d)

The Defense in Depth is an idea
an organisation should take to
harden their security posture
further. This can include
enabling multi-factor
authentication on all network
entry points (access control), a
good password policy which is
enforced, firewalls to thwart
and alert on potential attacks,
data loss prevention plan,
network segmentation, least-
privilege access, behavioural
analysis of files and employees
(insider threat) and physical
security controls (Cloudflare,
n.d).

It is important to know how to
test an application and how the
target organisation might have
implemented security measures
to bypass or test the validity of
the security controls

implemented.

Shift-left (Futuriom, 2023)

The Shift-left is a concept that

Shift-left, though not relevant to

seeks to better secure the penetration testing, is becoming
development life cycle of an a common trend in security. The
API in the earliest possible earlier we can identify

stage of development to better |vulnerabilities, the sooner we
identify security risks in the can remediate and better secure
code base and final application |the application from attacks. It
before being deployed into the |is becoming an essential

production environment. element of information security.

ISO/IEC 27001 (ISO, 2022) ISO 27001 is an international | Although not directly

security management standard |applicable to API security,

that guides an organisation ISO's security controls promote
through establishing, security training and awareness,

implementing and continually |which can be used to improve

improving security best API security. The standard can
practices and controls (risk further improve security and
management). awareness, especially in

knowing and being aware of
your APIs (asset management
and inventory), giving you full
visibility into how many APIs
you have and knowing their

differences.

Table 7: Theoretical Foundations

2.3 Literature Sourcing Process

To source valid, credible and respected literature published by credible authors, companies and
researchers, we went through a process that included searching various databases (see Table 10),
using keywords (see Table 9), watching YouTube videos that hosted webinars (Traceable, 2021) and
presentations (Bhatnagar, 2018) of cyber security professionals (APIsec University, 2022) whose
focus was on API security (Bombal, 2022) and penetration testing (Bombal, 2022) and see what
they recommend, the literature they authored (Ball, 2022), the researchers they recommend and
books they might mention that are best for learning (Farhi et al., 2023). We sourced various white

papers, books and bug bounty disclosure reports (see Appendix G).

2.3.1 Inclusion Criteria

2.3.1.1 Relevance to Topic

For our inclusion criteria, it is important that the literature we are sourcing is relevant to API
security and penetration testing. This can be literature that talks about API security and also

literature that talks about hacking APIs.

2.3.1.2 Time Frame

We also considered the time frame of the literature. For this, we set a date range between 2020 and
2023. This ensures the literature sourced is relevant and up to date, as the concern with technical
writings is that it can quickly become outdated and no longer relevant, especially when it comes to

hacking, techniques, methods and tooling.

2.3.1.3 Type of Literature

We sourced literature from the OWASP Top Ten documentation (OWASP, 2023), books and white

papers focusing on penetration testing APIs (see Table 5).

To learn about and source more literature, we start by looking at literature references, webcast
recommendations, YouTube searches and bug-hunter researchers who focus their careers on hacking

APIs and providing educational content to those who wish to learn about API hacking.

Researcher Work

Alissa Knight (Knight, 2020) SCORCHED EARTH Whitepaper. [Blog]
(Knight, 2021)

Cory Ball (Ball, 2022) Hacking APIs — Breaking Web Application
Programming Interfaces. [Book] (Ball, 2022)

Katie Paxton-Fear (Paxton, n.d) A dedicated API security researcher and bug
bounty hunter. [YouTube] (InsiderPhD, 2020)

OWASP API Top Ten project (OWASP, 2023) | List of all the ten most common and critical
API-specific vulnerabilities [Documentation]

(OWASP, 2023)

Nick Aleks and Dolev Farhi (Farhi, et al. 2023) | Authors of Black Hat GraphQL. [Book] (Farhi,

et al. 2023)

David Sopas (Sopas, n.d) MindAPI is a collection of API hacking tools

and resources. (Dsopas, n.d)

SALT Security (SALT, n.d) Author of the SALT API security white papers in
Table 5
Futuriom (Futuriom, 2023) Author of the shift-left security in the API

security field paper.

Vicki li (Li, 2021) Author of bug bounty bootcamp — chapter 24.

Cloudflare (Cloudflare, 2021) Author of the release paper on best practices and
considerations for API security and the release

of their API shield firewall.

Noname Security (Noname, 2023) Authors of the current trends white paper in API
security released this year demonstrate the
current trends and security attitudes of

organisations towards APIs.

Table 8: API security researchers and their works

2.3.2 Exclusion Criteria

2.3.2.1 Irrelevance to API hacking

We decided that any literature not talking about API hacking would be excluded from our inclusion
criteria. One book we sourced, Bug Bounty Bootcamp (Li, 2021), heavily focuses on bug bounty
and web application hacking. However, the author dedicates one chapter (chapter 24 — API
Hacking) to API hacking, so it was included as the insights from the source are valuable and

relevant to our research.

2.3.2.2 Time frame

Any literature outside of the pre-defined date range discussed in our inclusion criteria was excluded
as it may no longer be entirely relevant or working regarding tools, methods and techniques

demonstrated.

2.3.2.3 Authorship and Contribution

The authors needed to have contributed significant research efforts to the field of API security with

a focus on penetration testing. Otherwise, they were excluded.

2.3.3 Search Strategy

To search for our desired literature, we took the upside-down triangle method whereby you start
very broadly just searching for keywords that are relevant to the topic that you are researching, and
after this, take the sourced literature and start narrowing it down by reading the literature and
deciding whether it fits into our inclusion and exclusion criteria. We used the keywords in Table 9 in

various databases (see Table 10) to discover literature relevant to our research topic.

The keywords chosen in Table 9 were chosen because we wanted to ensure we sourced API hacking
and vulnerability sources and not other types of APIs. The keywords ensure that the literature that

returns is relevant to our overall research goals and objectives, as shown in Table 1.

Keywords

1 |“API vulnerabilities”

2 |“API Hacking”

3 | “API Penetration Testing”

4 | “GraphQL Security”

5 |“API Security Controls”

6 |“RESTful API Vulnerabilities”

7 | “API Security Vulnerabilities”

8 |“API Security Vulnerabilities”

Table 9: Keywords used in the process of literature sourcing

Where sources were not academic but still provided research about API hacking and vulnerability
exploitation, we needed to ensure their credibility and validity. In the case of Alissa Knight, a non-
academically sourced white paper, we validated her expertise and research by viewing (TechOmabha,
2022) interviews (Bugcrowd, 2022) and webinars (NahamSec, 2022), her other research (Knight,
2020) and her overall contributions to the field of hacking APIs (Knight, 2020). We took the same

approach to other non-academic sources.

2.3.4 Databases

As part of our literature-searching strategy, we also considered using a variety of databases.

However, we found that the most beneficial literature sourced was from industry expert

recommendations in either interviews (Ramsbey, 2023) or webinars.

Database Resource
Eric https://eric.ed.gov
Scopus https://www.scopus.com/home.uri

[EEE Xplore

https://ieeexplore.ieee.org/Xplore/home.jsp

Google Scholar

https://scholar.google.com

The Internet Archive

https://archive.org

Salt Security

https://salt.security/resources

Table 10: Academic Literature Sourcing Databases

Although not an academic database, the Internet archive allowed us to discover literature that may

no longer be available in the public domain.

2.4 Research Methodology in Cybersecurity

Our research is to create a penetration testing methodology for APIs focussing on GraphQL and

Rest APIs, walking a security tester through all the steps of performing a penetration test against an

API and ensuring thoroughness and robustness.

Research Methodology Objective

Description

Understand API penetration testing.

It is important to understand how to specifically
penetration test API architectures and
technology stacks as APIs require a different
testing approach to the standard web application

hacking approach of scanning and enumerating.

Identify API penetration testing tools and

resources.

Identify different API penetration testing tools

and resources specifically for API testing.

Develop an actionable API penetration testing

methodology to protect organisations and

customer data, defend against attackers and

Develop an actionable, robust and thorough API
penetration testing methodology to structure a

penetration test for hacking APIs, specifically

https://salt.security/resources
https://archive.org/
https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/home.uri
https://eric.ed.gov/

prevent the next big data breach. REST and GraphQL.

Analyse real-world data breaches caused by API |Identify real-world data breaches explicitly
exploitation. caused by exploiting and abusing API

vulnerabilities and misconfigurations.

Read and understand the methodology of By identifying the methodologies from black hat
blackhat hackers, where they write in detail criminal hackers, we can build a methodology
about the hack they performed. that uses techniques taken from a cyber criminal

perspective, which will aid in a more thorough

and robust methodology.

Understand ethical hacking. We must ensure that our methodology aligns
with the standards expected from ethical
penetration testers, ensuring that no legal or

ethical boundaries are crossed.

Identify common API vulnerabilities. Identify common and critical API vulnerabilities
to gain an initial idea of the type of threats that

APIs are uniquely exposed to.

Table 11: Research Methodology Objectives

Our developed methodology should cover all of the most critical and most commonly discovered
API vulnerabilities (OWASP, 2023), tools and techniques but also be produced in a way that mirrors
an attacker to think like one and then be able to identify weaknesses and patch them before

exploitation.

Through a qualitative research approach, we aim to produce a robust methodology that is both
actionable and deeply informed by real-world contexts and challenges to fit the needs of developers

and security professionals.

When developing the methodology, we seek to understand better the tactics, techniques and
procedures (TTPs) used by attackers. This way, the methodology can be structured similarly to how
attackers would structure theirs. By doing this, we can cover more aspects of hacking an API,
covering all of our bases and ensuring the security test is thorough and robust and we do not miss
anything. This is all to confidently show our clients that we have thoroughly tested their APIs and

can assure them they are at less risk of suffering from a data breach than before.

2.5 State of the Art in API Security

The current trends in the API security field are the increased risk of APIs being exploited to
facilitate large-scale data theft, an increase in API security awareness within the industry,
vulnerabilities commonly targeted in attacks (Noname, 2023), vulnerabilities that APIs can be
exposed to (OWASP, 2023) and a rise in data breaches due to APIs being used as the primary attack
vector (see Table 14).

It is reported that 78% of surveyed security professionals say that they have faced an API security-
related incident within the last 12 months, 72% say they have a full inventory of their APIs while
only 40% know which APIs return sensitive data, 81% say that API security is becoming more of a
concern and priority for security teams and 53% say that their developers are increasingly becoming
more aware and refactoring code to be more secure to defend from attacks (Noname, 2023) which

also shows that the shift-left concept (Futuriom, 2023) is seeing adoption amongst developers.

2.6 Penetration Testing

Penetration testing refers to the security test of an application, service, code review (looking for
CVE vulnerabilities and Odays), technology stack and environment to test the effectiveness and to
evaluate the currently implemented security controls to validate that the client has sufficient
protections, detection and mitigations and to test whether the controls could be bypassed. The main
point of a penetration test is to try and exploit the target in a way that the client did not think was

possible and to identify potential vulnerabilities that need remediation.

2.6.1 General Principles and Techniques

The penetration testing process (Cry0l1t3, n.d) consists of the pre-engagement, defined scope, how
long the test will last, contact information, get out of jail free card (legal protection), and typically
consists of information gathering, threat modelling, vulnerability and application analysis, proof of
concept (POC) exploitation, post-exploitation (if agreed to), and finally taking all of your notes
throughout the test and writing an actionable, easy to understand and reproducible report
(UnderDefense, 2019), which will consist of an executive summary, background, overall security
posture, risk profile, general findings from the test, recommendation summary (risk remediation
advice). A typical penetration test report (though it may vary) consists of an Introduction,
Information Gathering, Vulnerability assessment, a proof of concept and post-exploitation, the

overall risk profile and exposure and finally, the report's conclusion (Weidman, 2014).

2.7 API Penetration Testing

API penetration testing, though similar, is different from web application hacking. For API hacking,
the tester will need knowledge and skills in basic web application testing as APIs are integrated into
the web application ecosystem; however, APIs are a different technology (structure and
functionality) and can be integrated into web applications to provide a service or added
functionality. It is critical to understand the technology stack, communication methods
(HTTP/HTTPS) and responses (200, 400, 401, 403, 402, 500) used to not only identify where the
API endpoints are located but also how you can test the API as APIs may not always have

integrated front-end applications.

2.7.1 API Vulnerabilities

As part of our research on API security, we want to know the most prevalent and high-severity risks
that APIs are exposed to commonly in the wild. Knowing this information will help us in
developing the API penetration testing methodology as we can not only teach the reader how to
identify those vulnerabilities but also exploit them. By implementing this, we can better help

developers become more aware of the risks that APIs can expose.

2.7.2 OWASP TOP TEN

For this, we reference the OWASP Top Ten for APIs (OWASP, 2023), where they showcase the ten
most common and critical vulnerabilities for APIs (see Table 12). The document is targeted towards
developers. However, the contributors to the document are made up of cyber security and bug
bounty professionals who not only have experience with these vulnerabilities but also work to
identify and exploit them in the context of a bug bounty program. We use the OWASP top ten for
knowing what the most critical and common vulnerabilities are in regards to APIs to better identify

and incorporate them in our testing and methodology but also be able to categorise their severity to

our client.
OWASP API TOP TEN Vulnerability
1 API1:2023 - Broken Object Level Authorization
2 API12:2023 - Broken Authentication
3 API3:2023 - Broken Object Property Level
Authorization
4 API4:2023 - Unrestricted Resource

Consumption

5 API5:2023 - Broken Function Level
Authorization
6 API6:2023 - Unrestricted Access to Sensitive

Business Flows

7 API17:2023 - Server Side Request Forgery

8 API8:2023 - Security Misconfiguration

9 API9:2023 - Improper Inventory Management
10 API10:2023 - Unsafe Consumption of APIs

Table 12: OWASP API TOP TEN Vulnerabilities (OWASP, 2023)

2.7.3 Comparable Frameworks

Other than the OWASP top ten for APIs (OWASP, 2023) and web applications (OWASP, 2021),
other frameworks contribute to showcasing common tactics, techniques and procedures of attackers

and common vulnerabilities and exposures.

Framework Resource
MITRE ATT&CK https://attack.mitre.org
NIST https://nvd.nist.gov/vuln/detail/CVE-2017-0144
SANS https://www.sans.org/top25-software-errors
CVE https://cve.mitre.org
CISA https://www.cisa.gov/known-exploited-
vulnerabilities-catalog

Table 13: Comparable frameworks to the OWASP TOP TEN

2.7.4 Data Breaches via API Exploitation

To identify common attack vectors, tactics, techniques, and procedures of threat actors and also to
see what and how threat actors seek to target in a hack, we sourced various data breaches that
resulted from the exploitation of API vulnerabilities in organisational infrastructure to show not
only the prevalence of the risks that come from insecure APIs but also the severity and the large

scale theft of data that can occur from API data exploitation. This will also help us better develop

https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://cve.mitre.org/
https://www.sans.org/top25-software-errors
https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://attack.mitre.org/

our penetration testing methodology, as our hypothesis states that implementing a methodology will

significantly stunt the increase in data breaches.

Breach via API exploitation

Description

T-Mobile 37 Million accounts breached (Gatlan,
2023)

Thirty-seven million customer records were
exfiltrated out of the T-Mobile network by
means of exploiting their API (Spring, 2018).
The ‘how’ aspect of the breach remains unclear
as T-Mobile has not publicly stated it; however,
the leaked data included billing address, email,
phone number, date of birth, T-Mobile account
number and information (Gatlan, 2023). The
data exfiltration started on November 25th and
ended the following year on January 5th,
demonstrating that organisations do not have
proper asset management and little or no

visibility into their API infrastructure.

Twitter - 200 million email addresses leaked

(Abrams, 2023)

Twitter suffered a data breach via scraping their
APIs for each user's public and private
information, resulting in over two hundred
million Twitter users' emails being leaked online
(Abrams, 2023). The attack happened as the
attackers took already publicly breached email
addresses and phone numbers and used them to
enumerate further information (email addresses,
names, screen names, follow counts, and
account creation dates) from Twitter users to
create complete profiles on individual users via
Twitter's API. This meant that the only users
affected were those who had already been
breached in prior data leaks. The leaked
information could help facilitate social
engineering attacks on individuals as it could be
used to convince telecommunication customers

that the caller is a legitimate telco employee who

may seek to steal their information further.

T-Mobile - billing addresses, emails, phone
numbers, birth dates and other personal data

leaked (Keary, 2023)

This article effectively describes why API
security should be an organisation's priority and
be integrated into the organisation's security
practices and policies. The article uses T-Mobile
as an example, which has been famously
breached repeatedly, year after year. The article
emphasises the need to focus not only on web
application and network security but also,
because of the large adoption of cloud services,
organisations should focus on API security, with
the main reason being exposed API tokens and
keys (Keary, 2023), responsible for the initial

access vector.

Twitter - 5.4 Million user accounts breached

(Keary, 2022)

Twitter suffered an API exploitation facilitated
data breach of over 5.4 million user accounts
due to a vulnerability in Twitter's API, which
they patched in January of 2022 but did not
provide details. The article explains why the
focus on API security is a growing concern.
APIs have direct backend access to databases,
making them a valuable target for threat actors
who seek to steal and leak large amounts of
organisational data. The article also emphasises
the negative effects of breaches where user
passwords may not be included. However,
information such as email addresses, phone
numbers, and residential home addresses could
facilitate sophisticated social engineering
campaigns such as vishing, phishing and

smishing.

T-Mobile - Leaky API supports sim swap attacks
(Gallagher, 2017)

In 2017, one of T-Mobile's APIs suffered a
vulnerability categorised by the OWASP

foundation as excessive data exposure (Broken

Object Property Level Authorization) (OWASP,
2023). In this instance, the API endpoint did not
validate the user's permission to access the
requested endpoint, which worked by entering
someone's phone number and then returning all
of the customer's information to the user who
requested the endpoint. The information
provided would be required to prove that you are
the required sim card holder, which would then
go on to facilitate sim-swap attacks against T-
Mobile customers. A tutorial on performing this
attack was also published on YouTube before

being patched (Moim, 2017).

JustDial - Local Indian search engine finds 100

Million user accounts exposed (Kumar, 2019)

JustDial, India's largest local search engine for
local services (Hotel bookings, travel plans and
restaurants, etc.), suffered from an API
vulnerability (Broken Object Property Level
Authorization) (OWASP, 2023), where an API
endpoint leaked excessive information about
registered users. The information that was made
available included usernames, email, mobile
number, address, gender, date of birth, photo and
occupation (Kumar, 2019). It is important to
note that this did not result in a data breach. A
researcher discovered the vulnerability,
estimated to have existed since 2015. It is,
however, unclear if threat actors have previously

exploited this flaw.

Coinbase - Critical Bug Bonuty report
(Coinbase, 2022)

Another example of a company suffering from a
critical API vulnerability that could have been
used (theoretically) to steal more cryptocurrency
from the cryptocurrency exchange Coinbase
than requested is the report of a missing logic

validation check within the Coinbase platform

(Coinbase, 2022). The incident came to light
from an ethical bug bounty hunter who
discovered the flaw and was not previously
exploited by threat actors. This vulnerability,
however, emphasises that APIs can not only be
exploited for large-scale data exfiltration attacks
and the fact that some of the most severe and
critical vulnerability flaws lie in the logic of an
application but also in the abuse of existing
services where you can manipulate requested
data to steal other people or the market's
cryptocurrency potentially. The researcher was
awarded two hundred and fifty thousand dollars
for their findings, showing the potential for
security companies specialising in API
penetration testing. It could incentivise other
security companies to shift or include API
security penetration testing as part of their

services.

Venmo - Payments scraped via API reveals

customers spending history (Salmon, 2019)

Venmo suffered an API-specific vulnerability in
its mobile application, which demonstrates the
need to focus not only on APIs that you will
interact with in the browser but also on your
mobile device, as mobile applications make
heavy use of APIs. In this instance, this was not
an issue because it is a legitimate feature in
Venmo and the way the application was meant to
be used by design being able to see the purchase
history of other registered users; however, the
researcher, in this case, was able to mass-scrape
everybody's spending habits and aggregate this
data into an extensive database and have the
ability to visualise the data to view user

spending history, habits and activity which

revealed people who purchased illegal goods
and services amongst other things. The author
states that the data they could steal could be used
in smishing, phishing and vishing, amongst

other social engineering cyber attacks.

Peloton - Leaky API exposed customer profile
data regardless of privacy settings (Goodin,

2021)

Pelaton suffered from a vulnerability that leaked
extensive information about users, such as user
and instructor IDs, gender, age, weight, whether
the user trains at home or in a studio,
membership plan, and statistics on their
workouts (Goodin, 2021). It was reported that
Pelaton was aware of this flaw but did not act on
it before the disclosure. The endpoint to retrieve
this information did not require authentication,
which enabled this information to be made
available (Broken Authentication) (OWASP,
2023).

USPS - 60 Million accounts breached (Krebs,
2018)

The United States Postal Service (USPS)
suffered a vulnerability that exposed up to sixty
million accounts. The incident occurred due to
an API vulnerability that went undiscovered a
month prior by the USPS penetration testers, as
documented in their penetration testing report
(Inspector General, 2018). They failed to
identify the vulnerability as the testers adopted a
web application hacking methodology and used
it not only on the web applications but also on
the API, emphasising the need for an API-
specific penetration testing methodology. There
is no indication that a breach from third parties

who stole the account information occurred.

LinkedIn - 700 Million accounts breached
(Taylor, 2021)

Over seven hundred million accounts breached
from LinkedIn are up for sale by threat actors on

online forums. The author claims to have spoken

directly to the threat actor responsible for the
breach and said that it was due to exploiting
LinkedIns API; however, no further technical
details on the exploit and vulnerability were

made.

Table 14: Data breaches facilitated via API exploitation

A commonality amongst all breaches is that each organisation's API had authentication and

authorisation issues, which allowed attackers to access data they were not authorised to access.

2.8 Interdisciplinary Considerations

As well as sourcing literature relevant to our main thematic groups (see Table 3), we can also
consider literature from other disciplines directly relevant to our research. This includes laws and
regulations (see Table 15) surrounding data protection, computer misuse and general data
protection. These laws and regulations would be of significant consideration for penetration testers
to know about and be aware of before engaging in a penetration test as ethics and legal concerns for
if something goes wrong, even by accident, can be severe. Without proper protection, an
organisation could pursue legal action against the penetration tester, or the tester could cause

significant harm to the organisation.

2.8.1 Legal

From a legal standpoint, penetration testers should know about and be aware of Table 15, where
these laws and regulations are directly relevant to ethical penetration testers so that they know
where the line is and know not to cross it if these critical laws and regulations are not adhered to
financial damages, loss of revenue, reputational harm, and possible imprisonment for unethical and
malicious acts (intentional or not) along with data protection penalties which can be significant as

was seen in the British airways twenty million pound penalty (Newman, 2018) breach (ICO, 2020).

Laws and Regulations Relevance

Computer Misuse Act 1990 (Legislation, n.d) The Computer Misuse Act of 1990 ensures that
unauthorised access to systems without prior
consent is an illegal offence. This ensures that,

as an ethical penetration tester, you have

permission to conduct testing against authorised

systems.

Data Protection Act 2018 (legislation, n.d)

The Data Protection Act of 2018 ensures that
victims of data breaches are made aware and
that individuals know how their data is used. For
ethical hackers, this ensures that if we come
across any personal and sensitive data during
testing, whether credit cards, emails, phone
numbers, home addresses or medical documents,
this will remain confidential and shall not be

shared, stolen or distributed.

The Network and Information Systems

Regulations 2018 (NIS)

The Network and Information Systems
Regulations 2018 mandates that essential digital
service providers correctly implement
preventative measures to manage and identify
risks in their networks and systems. As an
ethical penetration tester, you may be tasked
with testing these security controls, ensuring
they perform properly, are fit for purpose and

cannot be mitigated by malicious third parties.

Privacy and Electronic Communications

Regulations (PECR)

Privacy and Electronic Communications
Regulations ensure security compliance with
electronic communications. This means that as
penetration testers, when we send the final
report full of misconfigurations, vulnerabilities
and other security discoveries, how we send the
document over is secure; we know who it is
going to, and once it arrives, it will be stored and
process securely by the correct authorised

parties.

Non-disclosure agreements (NDAs) (GOV UK,
n.d)

A non-disclosure agreement is when you agree
to not disclose any details of the penetration test
in any form and agree not to share or distribute
the final penetration test report with

unauthorised third parties. The agreement is to

prevent the distribution of information to
unauthorised third parties, as the final document
may contain currently unpatched vulnerabilities
that could be used maliciously against the

organisation.

Table 15: UK Laws and Regulations that ethical penetration testers need to be aware of and know

to protect themselves and their clients

2.8.2 Ethical Concerns

Staying within the law and good ethics is important when conducting a penetration test. This means
that you agree not to share the details of the penetration test with others outside of the organisation
and only conduct testing that has been pre-approved. This is because scanning and exploits may

cause systems to crash while testing and possibly data to become corrupted.

Failure to comply or to commit unethical or purposefully malicious actions may result in legal
action, financial penalties, reputational damage or imprisonment. While testing, some good ethical
practices include, when exploiting injection attacks, only enumerate system information and not
data such as database files. This can include exploiting sequel injection (SQLi) (only enumerate
database table names but do not dump tables), command injection (enumerate hostname and general
system information such as version of the kernel) or remote code execution. When testing for
authorisation issues, register two accounts that belong to you to test against and do not try to test

against other legitimate users.

2.8.3 Business Implications

Possible negative and positive business implications that a penetration test can have for an
organisation is the assurance that the systems that run the business and store the data are secure, in
line with best practices, providing assurance and encouragement to potential business partner

relations and investors.

However, the negative implications could be accidental damage of systems from testing and loss of
profits for any possible downtime. This could occur from sending too many requests during a scan,
which may cause system disruption (DOS) or the attempt at vulnerability exploitation, which might
corrupt data, impair system service reliability and functionality and may also cause downtime,

which means loss of revenue and reputational damage for the company.

2.9 Identified Research Gaps

2.9.1 API Security

Cloudflare released a white paper (Cloudflare, 2021) not only discussing the increased usage of
APIs, the threats they pose and how to secure your APIs better but also introducing their new
product, which acts as a WAF for APIs in preventing malicious threats targeted towards APIs which
is unique as there are not many security controls available in protecting and defending from API
attacks. However, the white paper does not evaluate the shield against real-world threat cases. The
document would benefit from citing statistics against how effective the shield is in the real world
and at thwarting attacks. The literature under this theme also lacks tooling for API security testing.
The OWASP foundation lists the top ten for web applications and provides tooling to discover these

vulnerabilities. They, however, do not make this effort for APIs.

2.9.2 Penetration Testing and Ethical Hacking

While literature such as Li's (Li, 2021) focuses on penetration testing methods, techniques and
tools, it lacks an actual methodology for the reader to take away as a deliverable (we address this in
our implementation) from the content and apply it in their penetration testing engagements. A cheat

sheet of commands, resources and links to the tools used at the end would be a major advantage.

2.9.3 Data breaches

Table 14 showcases data breaches by means of exploiting API vulnerabilities to exfiltrate data to
later sell on dark web markets. However, from most sources, an incident response report or general
findings of the attacker's attack methodology from how they found the vulnerability and exploited it

and whether it was automated or not is lacking.

2.9.4 API Vulnerabilities and Exploitation

Knight's white paper, Scorched Earth (Knight, 2021), provides valuable insights into the state of
API security in relation to financial services such as banks and cryptocurrency exchanges. Her
white paper, however, lacks any discussion on how she ethically tested the FinTech APIs, such as
using approved accounts to test against, using her own money or the banks and the process of

penetration testing tool approval to ensure no system disturbances occurred during testing.

The paper focuses primarily on technical vulnerabilities such as BOLA (OWASP, 2023); however,

the impact on end users if a blackhat hacker were to perform the same actions as the researchers and

the significant consequences this would have as Knight was able to transfer money out of other

customer accounts into her own.

2.9.5 API Development and Secure Coding Practices

Futuriom (Futuriom, 2023) introduces the idea of shift-left security, which seeks to implement
security testing and code review early on in the development life cycle instead of focusing on
security testing after development and not treating security testing as an afterthought. However,
Futuriom does not discuss how this may pose challenges to organisations when implementing shift-
left practices and how they can overcome potential challenges brought about through shift-left
implementation. The challenges may be cultural within the organisation who may not be familiar
with the idea of the process, skill gaps in performing code review and testing such as fuzzing and
vulnerability scanning alongside manual code inspection and tooling, for example, are there any
tools or frameworks that currently exist, do they require license keys and if so how much will that
cost. It is one thing to suggest implementing a more refined security testing process but another to

implement it across various organisations.

2.10 Relevance to Hypothesis

Our research hypothesis states that implementing an effective API penetration testing methodology
will significantly enhance the security of APIs and reduce the risk of data breaches. The sourced
body of literature (see Table 5) is directly relevant to our hypothesis as the literature's core themes
are API security, API vulnerabilities and exploitation, data breaches where APIs were exploited and
used as the initial access vector and source of data exfiltration (Gallagher, 2013), penetration testing
and ethical hacking and API development and secure coding practices (shift-left) (Futuriom, 2023).
These core themes from the sourced literature support the development of our research project of
developing an API penetration testing methodology as it provides us with knowledge and awareness
of the threats that APIs are exposed to, common and critical vulnerabilities specific to APIs
(OWASP, 2023), the attack vectors exploited in the wild by threat actors to cause a data breach to
large organisations and how the reliance and increased usage of APIs by organisations increases the
attack surface and risk of excessive data exposure and potential data breaches as APIs need to have

direct backend access to the database to fetch and receive data.

2.11 Critical Discussion

2.11.1 API Security

The OWASP top ten lists the most commonly discovered and severe critical vulnerabilities facing
web applications (OWASP, 2021) and APIs (OWASP, 2023). However, if we analyse both of the top
tens, the number one most severe and common vulnerability is both A01:2021-Broken Access
Control (IDOR) (OWASP, 2021) and API1:2023 - Broken Object Level Authorization (BOLA)
(OWASP, 2023) though these vulnerability classes have two different names they are identical in
their exploits. The decision to name the same vulnerability classes with different names, though
they belong to different top ten lists, could confuse and create gaps in security controls due to a lack
of standardisation amongst vulnerabilities, not only amongst security professionals and developers
but also for blue teams tasked with remediation who may be unfamiliar with each of the top ten

lists.

2.11.2 Penetration Testing and Ethical Hacking

Mapping the MITRE ATT&CK Framework to API security (SALT, n.d) creates an attack
framework common with exploiting APIs to facilitate data breaches. It is commendable as such a
framework does not yet exist and would benefit threat intelligence and defenders. However, the
white paper would benefit from identifying core tactic, techniques and procedures of common API
breaches and attackers and their identified tooling, word lists discovered in log files and

remediation and mitigation suggestions based on the findings.

2.11.3 Data breaches

Though it may not always be the journalist's fault, the lack of clarity and depth on the root causes of
the breaches, the attacker's methodology and process and the type of vulnerability exploited leave
the reader wondering how the breach occurred. For reading the data breach sources (see Table 14),
the advantage it has is learning from real-world attack vectors taken and exploited by malicious
threat actors to build better defences and a more robust penetration testing methodology
incorporating attacker techniques and attack vectors into the engagement. In Table 16, we identified
threat actor's write-ups. One of them (Cameron, 2012) is a post-digital forensic investigation into
the Stratfor breach (Cameron, 2014), which serves as an in-depth second-hand account of what took
place from the initial access, malware used, persistence, post-exploitation, lateral movement and
data exfiltration. This level of detail in API attack breaches would be an excellent way to learn from

past breaches and build better defences.

2.11.4 API Vulnerabilities and Exploitation

Banks and Cryptocurrency exchanges are critical institutions and businesses, not only because of
their position in current society but because they secure individual's finances to keep them safe and
centralised. A breach affecting these institutions and businesses could spell disaster for individuals
and the institutions. Fiat currency in banks is insured; however, cryptocurrency is not and with both
organisations relying on the use of APIs are highlighted in SCORCHED EARTH (Knight, 2021),
the ability an attacker could have to manipulate and exfiltrate other individual's money is a severe
and very real risk. Knight details her exploits using broken authentication and authorisation, finding

BOLA present amongst all APIs she tested.

2.11.5 API Development and Secure Coding Practices

The idea of shift-left in SALT security's white paper (SALT, n.d) and Futuriom (Futuriom, 2023) is
a good idea in theory, where the idea and implementation of best security practices starting at the
code base of the application through until and after deployment will reduce security related
vulnerabilities and decrease the attack surface. However, the problem is in the implementation of
the idea. Though there are careers in DevOps and DevSecOps, not all organisations can introduce
the concept of shift-left into their organisation without redesigning their security teams,
development processes, tools and work culture. The shift-left concept would require additional
training and the potential cost of license fees of tooling to accomplish this. A skill gap is that not all
programmers will have the skills to analyse code from a security perspective and identify

vulnerabilities.

2.12 Conclusion

Reviewing the literature in Chapter 2, which focuses on API security, vulnerabilities and
exploitation, data breaches, penetration testing, ethical hacking, API development, and secure
coding practices, also serves as the literature's main themes. It is evident that while there is
significant progress in tool development, resources and educational resources within the API
security field, gaps remain, particularly in tool development and secure coding practices and
techniques to test your APIs effectively. As different industries grow more reliant on the use of

APIs, the risk will increase with the growth of the adoption and popularity.

3. Chapter 3 - Research Methodology

3.1 Introduction

Our research methodology consists of using virtual and purposefully vulnerable API machines to
develop and test our penetration testing methodology, not only to develop but also to test and justify
each stage of the methodology. We take what we learned during our literature review from the
books, white papers and articles where we discovered API vulnerabilities, attack vectors, data
breaches and methods and seek to integrate that into the methodology to emulate an attacker to

prevent data breaches.

3.2 Background and Justification

As we covered in Chapter 2 (see Table 14), we have seen an increase over the past decade in API
exploitation, resulting in data breaches resulting in the loss of customer information such as phone
numbers, email addresses, IDs, passwords, and other personally identifiable information. These
breaches have changed the way we think about data breaches. We previously thought of a data
breach that exposed passwords, usernames and emails. Now, we are seeing more personally
identifiable information (PII) being leaked that has been increasingly used to facilitate sim swap

attacks (Gallagher, 2017).

To combat the increase in API-related data breaches, we strive to develop a robust and thorough
penetration testing methodology to help penetration testers and developers discover API-specific
vulnerabilities within their applications to identify misconfigurations and vulnerabilities before an
adversary can. We have seen, as in the case of the USPS (Inspector General, 2018) breach (Krebs,
2018), that penetration testers do not have the required knowledge or skills in testing an API,
knowing where to look, how to look and what to look for. Our methodology seeks to prevent this

through training and awareness.

3.3 Research Approach

We performed a mixed-method approach to our research. It encompasses quantitative and
qualitative research based on existing web hacking literature produced by black hat hackers who

breached different companies and wrote how they did it.

1 |Phineas Fisher’s Hack Back DIY guides (3) (EnlaceHacktivista, n.d) and videos (Afri

TechNet, 2016)

2 |Guacamaya’s Breach of Pronico Nickel Mine (kolektiva, 2022)

3 |Flexispy breach (EnlaceHacktivista, n.d)

4 | Liberty Counsel Breach (EnlaceHacktivista, n.d)

5 |Conti Ransomware Manual (Vxunderground, n.d)

6 |Bassterlord Ransomware Manual v1 (Vxunderground, n.d) and v2 (Bassterlord, n.d)

Table 16: Black hat hacker writeups and playbooks (see Appendix B)

The (although not academic) sources are reliable as the hacks described were from sources which
were either leaked from known threat groups (Conti Ransomware) who actively perform
ransomware attacks and make the news headlines or, in the case of Phineas Fisher, the events that
are described have been widely publicised (Porup, 2016) in the case of the hack against Gamma

Group and The Hacking Team (Bicchierai, 2016).

We also sourced white hat security research produced by:

1 [(Nahamsec and Jason Haddix (NahamSec, 2023)

2 | The OWASP Foundation (OWASP, 2023)

3 |Jason Haddix, the developer of the Bug Bounty Hunters Methodology for web application
security (HackerOne, 2022)

4 | Alisa Knights hacking into Banks and Cryptocurrency exchanges via APIs, SCORCHED
EARTH (Knight, 2021).

Table 17: White hat hacking methodologies
We did this because we wanted to see the tactics, techniques and procedures of cyber criminals and
white hats, then correlate that with the already existing methodologies from the white hats and see if
we can merge and tailor that information specifically to penetration testing APIs to prevent API

abuse and data breaches from known threats and techniques.

The body of literature that we were able to source was small (see Table 5); however, it is valuable as
the researchers who authored the literature are well-known and respected in the industry (see Table

8), and their works focus on API security which is directly relevant to this research project.

3.4 Tool Selection

We will conduct our testing in a virtual environment when developing the API penetration testers

methodology and to meet the agreement with the university ethics committee (see Appendix A).

The purposefully vulnerable GraphQL and Rest APIs, network (see Chapter 4 - 4.2), and the

attacker's machine will be virtualised. See Table 18 for all the tools we will utilise throughout the

methodology.
Tools Description Resource

Zaproxy Zaproxy is an intercepting https://www.zaproxy.org
proxy with a built-in
vulnerability scanner and web
crawler.

Zaproxy GraphQL Zaproxy add-on to enumerate | https://www.zaproxy.org/blog/

Introspection GraphQL introspection schema. | 2020-08-28-introducing-the-

graphql-add-on-for-zap

Burpsuite HTTP intercepting proxy with | https://portswigger.net/burp
limited capabilities due to
subscription (community).

Kiterunner Content discovery file and https://github.com/assetnote/
brute-force tool for APIs. Kiterunner

GoBuster Standard directory brute-force |https://github.com/OJ/GoBuster
tool.

Ffuf Web application fuzzer which is | https://github.com/ffuf/ffuf

very versatile and can be used
for parameter and endpoint

fuzzing.

Browser developer tools

Firefox browser developer tools
has two useful features. The
network tab to discover APIs
are you casually use an
application and the debugger to

view beautified JavaScript files.

https://www.mozilla.org/en-

GB/firefox/developer

https://www.mozilla.org/en-GB/firefox/developer
https://www.mozilla.org/en-GB/firefox/developer
https://github.com/ffuf/ffuf
https://github.com/OJ/gobuster
https://github.com/assetnote/kiterunner
https://github.com/assetnote/kiterunner
https://portswigger.net/burp
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/

WayBackURLs

Not demonstrated in this
reserch project but a
commandline tool to efficently
search your target in the

Internet archive.

https://github.com/

tomnomnom/waybackurls

Exploitdb — Searchsploit

Exploit database search engine
to cross-reference discovered
technology stack compoents to
discover exploits for your
target. Searchsploit is a
command line tool to interact
with the exploit database and
can be used with other tools for

automatic exploit detection.

https://gitlab.com/exploit-

database/exploitdb

Nmap NSE for GraphQL Nmap scripting engine (NSE) | https://github.com/dolev{/
script to detect and alert on nmap-graphgl-introspection-
GraphQL introspection enabled. | nse.git

Wappalyzer Used to detect what technology | https://www.wappalyzer.com
stacks are running on your
target applications.

Nuclei A fully automated vulnerability |https://github.com/
scanner with API vulnerability |projectdiscovery/nuclei
scanning template support to
detect API specific
vulnerabilities and
misconfigurations.

Nmap Versatile network mapper to https://nmap.org

detect open ports and running

services.

Third-Party Services

Description

Resource

Built with

Search engine to search your
target domain to see what

technology stack they have

https://builtwith.com

https://builtwith.com/
https://nmap.org/
https://github.com/projectdiscovery/nuclei
https://github.com/projectdiscovery/nuclei
https://www.wappalyzer.com/
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://github.com/tomnomnom/waybackurls
https://github.com/tomnomnom/waybackurls

running on each of their

domains.

Exploit-db

Exploit database and search
engine. Cross reference with
your targets technology stack

and their version numbers.

https://www.exploit-db.com

TheWayBackMachine

The internet archive is used to

look back at historical data and
can be used to discover old API
documentation to advance your

reconnaissance.

https://archive.org

Swagger Editor

If you discover API
documentation that is not in the
correct format but instead in
raw text, you can format it
correctly for clarity and better

readability

https://editor.swagger.io

DNSdumpster

DNS enumeration search
engine to discover subdomains

passively.

https://dnsdumpster.com

Machines

Description

Resource

Kali Linux

The hacker's machine being
Kali Linux makes it clear to the
reader who the attacker and the

API server are.

https://www.kali.org/get-kali

Ubuntu

The API server hosts the
purposefully vulnerable APIs.

https://ubuntu.com/download

Purposefully vulnerable API

applications

Description

Resource

crAPI

An OWASP project that
incorporates REST APIs and is

purposefully vulnerable to

https://github.com/OWASP/
crAPI

https://github.com/OWASP/crAPI
https://github.com/OWASP/crAPI
https://ubuntu.com/download
https://www.kali.org/get-kali
https://dnsdumpster.com/
https://editor.swagger.io/
https://archive.org/
https://www.exploit-db.com/

perform ethical testing.

DVGA A dedicated GraphQL https://github.com/dolevf/
purposefully vulnerable virtual | Damn-Vulnerable-GraphQL.-
machine to conduct ethical Application
testing.

VAmPI A RESTful API which https://github.com/erev0s/
incorporates the OWASP API | VAmPI
TOP TEN list for ethical
testing.

Juice Shop E-commerce application which |https://github.com/juice-shop/
incorporates REST APIs and juice-shop
real world design and
technology stack to perform
CTF challeneges against and
ethical testing.

Pixi OWASP project that acts as a | https://github.com/DevSlop/

social media pllatform
purposefully vulnerable and

meant for ethical testing.

Pixi

Word Lists

Description

Resource

Hacking-APIs

A dedicated API word list to be

used during content discovery.

https://github.com/hAPI-
hacker/Hacking-APIs

Seclists

An accumilation of word lists
and incoropates usernames,
passwords and GraphQL
specific word lists for content

disocvery.

https://github.com/

danielmiessler/SecLists

Assetnote Kiterunner word lists

API-specific word lists
designed to be used with

Kiterunner.

https://wordlists.assetnote.io

Table 18: Tools and resources used throughout Chapter 4

https://wordlists.assetnote.io/
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/DevSlop/Pixi
https://github.com/DevSlop/Pixi
https://github.com/juice-shop/juice-shop
https://github.com/juice-shop/juice-shop
https://github.com/erev0s/VAmPI
https://github.com/erev0s/VAmPI
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application

3.5 Ethical Considerations

We need to be able to take theoretical knowledge and implement it practically. This will not only
show that the tactics, techniques and methods shown are valid but will also help visualise for the
reader how to reproduce what is being described, making the learning process easier and more

actionable.

As ethical penetration testers, we must ensure that our tests are authorised, scopes and definitions
have been defined and communicated, and the tools have been approved. This is to ensure a

reduction in risk to the stability of the client's infrastructure.

As in the case of this research project, we will be performing our testing in a completely isolated
virtualised network using VirtualBox. The API server, the attacker's machine, and the virtual
network will all be isolated. This ensures no indirect or direct disturbance to legitimate third-party

services.

3.6 Virtualised Testing Environment

For both ethical and legal reasons, we cannot just attack any API that is owned by an organisation
without consent and approval. As per our agreement with the university (UoC) ethics committee
(see Appendix A) and to meet the agreements made for ethical best practices, we will be using
purposefully vulnerable API machines (Both GraphQL and RESTful) to conduct our testing in a
completely isolated environment using virtual machines inside of VirtualBox. Not only is the API in
a virtual machine but the tester machine as well to ensure that the testing network stays completely

isolated.

Here, we set up two virtual machines using VirtualBox, one being the penetration testers machine
and the other being the API server. Both machines will be put into an isolated network, which we

will create, and have a dedicated amount of CPU cores, network, RAM and storage.

kali-aph-hacker [Running] - Oracle VM Vit

File Machine View Input Devices Help

ok

up, Ne
the matrix has you
o hy ran

bit

Figure 5: Penetration Testers Machine - Kali Linux

Figure 6 shows that the Kali machine has 6GB RAM and six virtual CPU cores and is put onto the
API_LAB virtual network (LAN), ensuring isolation.

kali-api-hacker - Settings X kali-api-hacker - Settings

E General System E General Network

L]
Motherboard | Processor | Acceleration System Adapter1 | Adapter2 | Adapter3 Adapterd
W oisplay W oisplay

Base Memory: 6048 MB = v| Enable Network Adapter
@ storage 4MB 16384 MB

@ avdio Boot Order & avdio

v © optical
@ Network Floppy & Advanced

Network
£ serial Ports 2 £ serial Ports

Chipset: | PIIX3 ~
£ uss <P £ uss
IPM: None ~
|___| Shared Folders D Shared Folders
Pointing Device: | USB Tablet

Attached to: | Internal Network

Name: |API_LAB

E User Interface E User Interface

Extended Features: v Enable I/0 APIC
v| Enable Hardware Clock in UTC Time

Enable EFI (special OSes only)

Qcancel |[QoK H Qcancel || @ok |

kali-api-hacker - Settings X kali-api-hacker - Settings

Motherboard | Processor | Acceleration Basic | Advanced = Description = Disk Encryption

Displa —_— Displa
E e Processors: @ P Name: kali-api-hacker

Storage 1CPU 16 CPUs @ Storage
G{:D Audio [Execution Cap: 100% |+ GD] Audio

1% 100%
ﬂ Network ﬂ Network
Extended Features: |v| Enable PAE/NX

Serial Ports Serial Ports
§ Enable Nested VT-x/AMD-V ®
£ uss & uss

[7] shared Folders [] shared Folders
E User Interface E User Interface

Type: | Linux

Version: | Debian (64-bit)

Qcancel || @ok |

Ocancel |[ok |

Figure 6: Kali Linux virtual machine configuration settings

File Machine View Input Devices Help
TR
& 2

4

"
|
©)
=]
A
?

|

Gt

Home

Figure 7: API Server - Ubuntu

The Ubuntu API server machine has 5GB RAM and five virtual CPU cores and is also put onto the
same virtual network (API_LAB).

Ubuntu-API-Server - Settings X Ubuntu-API-Server - Settings

E General System E General Network

7 £l
. A Motherboard | Processor = Acceleration S Adapter1 | Adapter2 = Adapter3 Adapter 4
[oisplay = (W] oisplay

Base Memory: 5040 MB |2 | Enable Network Adapter
@ om9s IME [Lo35a B @ Storsge Attached to: | Internal Network

00 avdio goot order O Audio

v/ © optical
@ Network v B Floppy 1) Network b Agvanced

Network
£ serial Ports g £3 serial Ports

Chipset: PIIX3 ~
5 uss & use

IPM: None ~
[7] shared Folders [7] shared Folders
Pointing Device: | USB Tablet v
E User Interface

Name: | AP|_LAB

E User Interface
Extended Features: V| Enable /O APIC

V! Enable Hardware Clock in UTC Time

Enable EFI (special OSes only)

Ocancel |[QoK Qcancel || @ok

Ubuntu-API-Server - Settings x Ubuntu-API-Server - Settings

E General System

5] Syste . 3 . ~ =
Motherboard | Processor = Acceleration Basic | Advanced = Description = Disk Encryption

[oisplay —
Processors: - Name: Ubuntu-API-Server
[storage 1CPU 16 CPUs

@n audio Execution Cap: 100% |2 @p Audio
1% 100%
@J Network @ Network

Extended Features: || Enable PAE/NX
Serial Ports Serial Ports
@ Enable Nested VT-x/AMD-V ﬁ

£ uss £ uss

[7] shared Folders [7] shared Folders
E User Interface E‘ User Interface

Type: Linux

Version: | Ubuntu (64-bit)

@cancel |[@ok Ocancel || ©ok

Figure 8: API Server virtual machine configuration settings

3.7 The Importance of a Methodology

The goal is to validate that the client's API is secure, vulnerabilities have been found, and to take
our notes (keep thorough notes and screenshots) and write an actionable report written in non-
technical and plain English to allow for a thorough understanding by the reader with a step by step
guide for reproducing exploits to allow the security team to identify, understand and remediate the

risk effectively.

3.7.1 Limitations of the Methodology

During our testing, there will be some limitations to the methodologies development and
implementation due to ethical research restrictions. This involves not being able to perform the
passive reconnaissance phase of the methodology as this requires third-party service use such as
Google, Shodan, Censys, etc. This also involves tooling as with API security testing, and some tools
are specific to APIs; however, there are not a lot and the primary tool Postman (see Appendix E),
which we want to use but cannot because it requires an active internet connection which is not

possible inside of our isolated virtual environment.

3.8 Configuring The Testing Environment

We will use purposefully vulnerable APT applications to demonstrate our methodology. See Table
18 for a list of the vulnerable API machines we will use. We will use these applications to perform

testing to demonstrate each phase of the methodology and the tools included.

3.8.1 Attackers Machine

We will use two virtual machines using VirtualBox, one being the attacker and the other being the

victim machine. These machines will be set up on their dedicated networks and assigned IP

addresses.

Command Description
vboxmanage dhcpserver add -- The command used in a Linux terminal on the
network=API_LAB --server-ip=10.38.1.1 -- host machine creates the ‘API_LAB’ virtual

lower-ip=10.38.1.110 --upper-ip=10.38.1.120 -- |network in VirtualBox. The commands are
netmask=255.255.255.0 -enable specific to VirtualBox.

Table 19: Creating the network (Wallwork, 2023)

3.9 Conclusion

Chapter 3 covers how we will conduct our research methodology, the considerations we will take,
such as using virtual machine testing environments, possible limitations to the research, ethical
considerations of the research, research approach and an overview of all the tools and services we
will be using during our Chapter 4 implementation. We do this to validate our hypothesis and ensure

our research project and testing stay within the ethics committee's agreement (see Appendix A).

4. Chapter 4 — Research Implementation

4.1 Introduction

For our implementation, we will develop a penetration testing methodology for performing
information gathering, reconnaissance, content discovery, vulnerability scanning and API
application analysis to map the attack surface of an API and test different types of vulnerabilities,

namely logic-based authentication vulnerabilities such as BOLA.

4.2 Kali Linux - Tester

All testing will be performed within the Kali machine, whilst the APT applications will be hosted on

the Ubuntu server (see Figure 7).

kalk-apl-hacker [Running] - Oracle VM VirtualBox

File Machine View Input Devi

’%_7-- B o

truder Repeater Window Help
Praxy Intreder Repeater Collaborator Sequencer Decoder Comparer

Time to level up? Catch

ilter | Running | Paused | Finished Livetask | Scan .. B Issue activity [Pro version only]

File Actions Edit View Help

Event log

06113714 7 56p 2023 Infes Pr Proxy senvice started on 127.0.0.1:8080

Memory: 91.8MB I Disk 3248

W &5 B8 El@ e right crl

Figure 9: Attackers machine setup (Kali)

4.2.1 Vulnerable API Machines

We will use Juice Shop, an e-commerce application that uses REST APIs; crAPI, a mechanics

website with REST API integration, DVGA which is a Pastebin application made with GraphQL,

VAmPI a headless API server utilising REST APIs and a social media application called Pixi which
also uses REST APIs.

4.2.1.1 OWASP Juice Shop

WputDevices Help

:-% su root
Password:
root@l78878: [home/hacker# 1s
=
[] root@l78878: /home/hacker# cd server/juice-shop/
root@178878: [home/hacker /server/juice-shop# docker run --rm -p 3000:3000 bkimminich/juice-shop
Ea info: All dependencies in ./package.json are satisfied (OK)
3y info: Detected Node.js version v18.15.0 (OK)
info: Detected 0S5 linux (O0K)
info: Detected CPU x64 (0K)
info: Configuration default validated (OK)
info: Entity models 19 of 19 are initialized (0K)
info: Required file server.js is present (0K)
info: Required file styles.css is present (0K)
info: Required file main.js is present (0K)
info: Required file polyfills.js is present (OK)
info: Required file tutorial.js is present (OK)
info: Required file runtime.js is present (0K)
info: Required file index.html is present (O0K)
info: Required file vendor.js is present (0K)
info: Port 3000 is available (OK)
info: Chatbot training data botDefaultTrainingData.json validated (OK)
info: Server listening on port 3000

File Machine View input Devices Help

Lirox @ Hall Tooks ® KaliDocs S0 RaliForume & Kl RtHunter wpla-DE & Gosgle Hacking DB 1% OfSas @ OWASP API Secarity

. OWASP Juice Shop Qe @om

Apple juice :
(1000miy Apple Pomace
1.9%n 0.89m
Carrot Juice Eggiruit Juice
il (scomi}
7.95u 0

Figure 10: JuiceShop server setup and running

All Products

Banana juice 1 BeErJuice
[1000mi) Shop
E Salesman
198w 1 Artwork

5000w

= res s Green
Tuit Press Smigothle

k) 1.k

i | 8 0 3 [resohe Cird

4.2.1.2 Completely Ridiculous API - OWASP crAPI

M WirtualBox

Available Balance: 5100

Seat, 510.00 Wheel, $10.00

D

N 0 &) righe et

ubuntu-ARi-Server icnaBih [Running] - Gracle Vi virtualBox

Maching Vigw input Devices Halp

ties Termingh TAug 1535 L ER

hackerDJTaaTE ~/serverfcAR

er -compose ps
nd State

fapp/server (unhealthy)
fbin/sh -c fapp/main [thy)
h
tc/nginx/ngin ...
c [appfrunner.sh

Figure 11: crAPI server setup and running

4.2.1.3 Damn Vulnerable GraphQL Application - DVGA

- x
e Machine ¥ Input Devices Help

nerable-CraphgL-Application

app.py Dockerfile README.md version.py
config.py LICENSE.md requiremen

hali-api-hacke;

Damn Vulnerable GraphQL Application

Welcome!
Damm Vulnerobie Groph) n, or DVIGA, IS & vdnerabie GaphQL mplemenaton. DY

Getting Started

maticaly, you can o a5 vakias.

wantabion without any restnc nther peotectiones. This i what you would get aut ¢ i i mest of the GraphOL mplementstians withaut

CVGA's Hard level is @ herdened GraphQL impismentation which comains a few secunly comiols agairst malicious gueries, such as Codt Based Analysis, Query Depth, Fiek] De-dup checks, ete.

GraphQL Resources

To learn about Gra s, 1he Following ESouTcEs may be benefi

P ideos

B Articles
D i &) Right ctrl

Figure 12: DVGA server setup and running

4.2.1.4 VAmMPI

Ubunty-AM-Server (Vampic) [Runaing] - Oracle W VirtualBox

roob@JTETE Mome/hadker/server/VAmP |

* Cabug mode:

* Renning on
= Fenning on

& L0

Jocs B Kall Forums @€ Kall NetHunter & Exploit- DB & Google Hacking D8 1 DiSec § DVSF

Figure 13: VAmPI setup and running

4.2.1.5 OWASP Pixi

e Machine View input Devices Help

HEeompkor- 2

Dixi

share the world

Hello, Pixi

Mew to Pixi and
need account?

OWARSP

Open LWeb Rpplication
Security Projact

Figure 14: Pixi setup and running

Right ctr|

4.3 The API Penetration Testers Methodology

The following methodology follows a systematic approach to penetration testing APIs. It focuses
primarily on RESTful but also incorporates GraphQL as they are the two most widely adopted and
commonly used APIs today. We aim to be thorough and robust and to cover the core stages of an

API-centric penetration test.

The Web API Hackers
Methodology

* Information Gathering
= Web API Identification
= APl Documentation Review
= Authentication & Authorisation
+ Reconnaissance
- Passive
= Dorking
= DNS Enumeration
= Technology Identification
= Vulnerability Search
= Discovering Historical Data
* Active
= Port scanning
= Subdomain Enumeration
= Walking The Application
= Web Crawling — Spidering
= Technology Identification
= Source Code Analysis — JavaScript
+ Content Discovery
* Subdomain Brute-Forcing
» Directory Brute-Forcing
* File Brute-Forcing
* Endpoint Analysis
* APl Version Discovery
* Parameter Fuzzing
* Vulnerability and Misconfiguration Scanning — Automated
= Automated Vulnerability Scanning -Nuclei
* Web API Analysis

* Broken Object Level Authorization

Figure 15: Methodology Overview

4.4 Information Gathering

Information gathering is an essential first step for approaching a target, as we will want to know
some essential information initially about our target. We will want to identify what type of API our
target uses, whether any documentation is available, how authentication has been implemented,
what format the API transfers data in and whether the API implements rate limiting on requests.
This will be helpful information for us as we perform our testing to refer back to if and when we

may need to, and it will help us learn how the API works.

4.4.1 API Identification

Here, we focus on identifying what type of API is in use by our target by analysing endpoint

structure, behaviour and response.

We will look at the request and response data, data transfer method (XML, JSON or YAML),
content type (application/json, application/xml), HTTP allow methods, server information, security

headers and API endpoint structure.

REST APIs typically transfer data in either JSON or plain text format, knowing this and the fact that
REST APIs use standard HTTP methods (GET, POST, PUT, DELETE) (Li, 2021) and HTTP status
codes (200, 404, 401, 403, 405, 400) we can determine that Figure 17 is a RESTful API based on

the response data from our request.

Method Endpoint Structure
GET /identity/api/v2/user/dashboard
GET /workshop/api/shop/products
POST /identity/api/v2/user/pictures
POST /community/api/v2/coupon/validate-coupon

Table 20: Common endpoint structure for RESTful APIs in crAPI

Request
Pretty Raw Hex o =

POST /workshop/api/shop/orders HTTP/1.1

Host: localhost:8888

Content-Length: 29

sec-ch-ua: "Chromium"” ;v="113", "Not-A.Brand" i wv="24"

Content-Type: application/json

sec-ch-ua-mobile: 70

Authorization: Bearer

ey hbGci0iJSUzIINIJ9. ey JzdWIi01JoYWNTZXItYWSAZZ1haWwuY29tTiwicm9sZSISInVzZXIiLCpYXQi0jE20TMBOD
gxMTcsImV4cCIBMTYSNDASMjkxN3@ . Hia®@_wjKRSEj31nIzKBREmSQEh_dWzrzh8jIdeHdpSDRzb1ilG1sQZ6PUTaebHDuk
LO3x1UiGYcfPNPdOXHp4cNEYS1Bgo-RelK781FaktyqV5@Rzsd5gy_GFs2tC3KzFPyQ20Ul5aKVL20K4i52pJOLY09kbkgf
sDAa-bGVYeRexVDag2a3kmz39nMX1YBcK8mlu_IP-s5-Ae8rZMhVI2ExmGrwGl24GGIsGHET j4q7HX 1428 fR0UQhM_La_vok
JoHZYWE]Th5_hudtaozulCqisClhLOnlee9Gti@USKIkeWGOWOpQOBTFKxdCN3IyngUUKAVIPDOXG2ZEThB0WZ Pw
User-Agent: Mozilla/5.@ (Windows NT 10.0; WinG4; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/113.8.5672.93 Safari/s537.36

9 sec-ch-ua-platform: "Linux"”

10 Accept: */*

11 Origin: http://localhost:228282

12 Sec-Fetch-Site: same-origin

13 Sec-Fetch-Mode: cors

14 Sec-Fetch-Dest: empty

15 Referer: http://localhost:8888/shop

16 Accept-Encoding: gzip, deflate

17 Accept-Language: en-US,en;qg=0.9

18 Connection: close

S

PR RS B ST}

[=]

19
20 {
"product_id":2,
"guantity”:1
}
Figure 16: Request data from a REST API - crAPI
Response a-=-=

Pretty Raw Hex Render = n =

HTTP/1.1 20@ OK

Server: openresty/1.17.8.2

Date: Thu, 31 Aug 20823 13:23:14 GMT
Content-Type: application/json
Connection: close

Allow: GET, POST, PUT, HEAD, OPTIONS
Vary: Origin, Cookie
Access-Control-Allow-Origin: *
X-Frame-Options: SAMEORIGIN

18 Content-Length: 59

RS

L s T, IR - ¥

[T <]

11
12 {
"id":2,
"message”:"0Order sent successfully."”,
"credit":80.0
}

Figure 17: Response data from a REST API - crAPI

To identify that the API is GraphQL, we can inspect the HTTP headers, HTTP allow methods (GET,
POST), body of response, and HTTP status codes (200 OK) by creating valid and malformed

requests to the GraphQL endpoint (/graphql) and then inspect the error messages then observe the

HTTP responses to determine whether or not the API is GraphQL in Figure 18.

Method Endpoint Structure
GET /graphql
GET /graphigl
GET /v1/graphql
GET /v2/graphgl

Table 21: GraphQL endpoint structure (Aleks and Farhi, 2023)

Request

dJ
E]
1]

Pretty Raw Hex

fosT sgraphgl HTTP/1.1

Host: 1@.32.1.11@:5013

Content-Length: 445

Accept: application/json

User-Agent: Mozilla/5.® (Windows NT 12.@; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/113.8.5672.93 Safari/537.36
Content-Type: application/json

Origin: http://19.38.1.110:5013

Referer: http://10.38.1.110:5013/create_paste
9 Accept-Encoding: gzip, deflate

16 Accept-Language: en-U5,en;q=0.9

11 Cookie: env=graphigl:disable

12 Connection: close

LNods W R e

=

o

13
14 {
"guery”:
"mutation CreatePaste (3title: String!, $content: String!, $public: Boolean!, $hurn: Boolea
nty {vn createPaste(title:$title, content:$content, public:$public, burn: 3burn) {\n
paste {\n idvn contenti\n title\n
burnin i Fun B,
"variables":{
"title":"J78878 amazing public paste”,
"content":"J78878 amazing public paste”,
"public”:true,
"hurn":true
H
}

Figure 18: Request data from a GraphQL API - DVGA

Response
Pretty Raw Hex = i =

1 htTR/1.1 200 OK

Content-Type: application/json

3 Content-Length: 136

4 Date: Thu, 31 Aug 2023 15:28:16 GMT
£

]

5 {
"data":{
"CcreatePaste”: {
"paste”:{

"id":"13",
"content”:"J78878 amazing public paste”,
"title":"178878 amazing public paste”,
"burn”:true

Figure 19: Response data from a GraphQL API - DVGA

4.4.2 API Documentation Review

API documentation made by the developer for the consumer can provide us with a wealth of
information about how the API works, what and how it is meant to be used, different paths,
endpoints, parameters, authentication requirements, example requests, changelog, headers and
allowed HTTP methods can all be found in the APIs documentation. What is significant about API
documentation is what it does not tell you. This can include unintended exposures, mismatches in
behaviour and deprecated features. Documentation can be found either publicly with no

authentication required or you will need to authenticate to be then able to locate the documentation.

Documentation paths

1 |/docs

2 |/apidocs

3 |/developers/documentation

4 |/api/documentation

5 |/api-docs

6 |docs.target.com

Table 22: Common API documentation web paths (Ball, 2022)

® Swagger Ul

Kali Docs % Kali Forums & Kali NetHunter Exploit-DB Google Hacking DB OffSec @ OWASP APl Security P... @ OWASP APlSecurity P... % JSON Web Tokens - jw..

@ swegeer |

NextGen B2B API €2

New & secure JSON-based API for our enterprise customers. (Deprecates previously offered XML-based endpoints)

MIT

Servers

/b2bjv2 v
Order’ API for customer orders ~
foxders v @
Schemas ~
Order »

OrderConfirmation »
OrderLine »

OrderLines »

Figure 20: JuiceShop api-docs documentation discovered

4.4.3 Authentication & Authorisation

As part of understanding how our client's API works, we will want to know how the API handles
authentication, if at all, as some developers may not implement authentication (or properly) as they
believe no one can find specific endpoints (security through obscurity) so they neglect basic
authentication however assuming this is not the case we will want to know how the API handles
authentication so that later when we are performing logic-based authentication tests we will know

what type of authentication is in place to then try and bypass it.

Authentication Method

1 |[No authentication

2 |Json web tokens (JWT)

3 |API Keys

4 |HTTP Authentication

5 |HMAC

6 |[Oauth

7 |Bearer token

Table 23: Common API authentication methods (Ball, 2022)

For information gathering, all we care about right now is identifying how the API handles
authentication (can we authenticate?), so we will look to identify endpoints, security headers and

tokens, see Figure 21.

Request
n

i

Fretty Raw Hex

POST /identity/api/auth/login HTTP/1.1

Host: localhost:8888

Content-Length: 53

sec-ch-ua: "Chromium”;v="113", "Not-A.Brand";wv="24"
sec-ch-ua-platform: "Linux"”

sec-ch-ua-mobile: 78

User-Agent: Mozilla/5.0 (Windows NT 10.9; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/113.8.5672.93 Safari/s37.36

Content-Type: application/json

Accept: */*

Origin: http://localhost:8888

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

13 Sec-Fetch-Dest: empty

14 Referer: http://localhost:8888/login

15 Accept-Encoding: gzip, deflate

16 Accept-Language: en-US,en;q=0.9

17 Connection: close

18

19 {

o [T TR U S T N TS

oo

=
M = @ WO

"email": "hackerman@gmail.com”,
"password”:"P@55wlrd"”
}

Figure 21: Authentication request made with POST — crAPI

Response

Pretty Raw Hex e n =

=

HTTP/1.1 208

Server: openresty/1.17.8.2

Date: Thu, 31 Aug 2023 16:28:06 GMT
Content-Type: application/json
Connection: close

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Access-Control-Allow-Origin: *
X-Content-Type-Options: nosniff
X-XS55-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=8, must-revalidate
Pragma: no-cache

Expires: ©

¥-Frame-Options: DENY

» Content-Length: 510

S B o R, R S W R]

i e el
W N S O 0

[%;]

[
~d O

18 {
"token”:
"eyJhbGci0iJSUzIINLIIS . ey zdWIi0ioYWNTZX JTYWSAZZ1haWwuY29tTiwicmIsZSIBINYzZZXIiLCIpYXQi0jE20
TMROTkyODYsImV4cCIGMTYSNDEWNDAANNG . EnjkwTBC-jg3Y¥NPKQZZEjdLBSt3Tiakt5xbBERPIKANUCTta9gdQe3q
FInQ7daRtruCIgl_lKzE3ryfjduKUSfPdcXHYPOJROEPUkbGB4xUY4QKTQ_SrhsAxgAAYiPinKwihjTC_Pa-aYP1lnEqg
TaBPNNTQjhsASFQoDTQ3xoRbP7VCXycEElsZ2ZMVNpxkhD1RtZOW1dgr JnRHexNipSoIXQ75hssgEMY1l-_BLymkoUEeS
D701EB@W4ShalenHpUhf3Y0XUbJBeOBK7ayMhlsP215geVJ)GiPgAe39B0zwiB4pcciwIT2YeQ7saWsveGEyYpF4lJu4
bUc_2pGE_kEmA™,
"type"”:"Bearer"”,
"message” :null

}

Figure 22: Authentication response from request (Bearer Token) - crAPI

It is important that whilst testing authentication, we also determine whether or not the API has
proper authorisation setup. If a user can authenticate as user1 but can access the resources of user2,
which they are not permitted to do, then this is improper authorisation control. We should consider
how the API handles endpoint-based permissions and role-based access control. To do some cursory
testing, identify universally unique identifiers (UUIDs) (user=123) and change the values

(user=124).

4.4.4 Tool Summary

Tool Link

Burpsuite https://portswigger.net/burp

Table 24: Tools used summary

4.5 Reconnaissance

Reconnaissance is one of the most important stages of any penetration test, as the larger the attack

surface we can discover, the better chance we will have of discovering a vulnerability or

https://portswigger.net/burp

misconfiguration somewhere in it. During the Reconnaissance process, we may stumble upon
vulnerabilities without meaning to. It is good to either try to exploit as you move through and report
it immediately or note it down for later exploitation. Best practice dictates that we asses its severity

and potential impact and report it immediately.

45.1 Passive

Passive reconnaissance involves gathering information about our target without direct interaction.
This can be done through third-party services (see Table 18) that fetch information on our behalf.
Techniques include Dorking using search queries to find specific data. Services that can identify our
target's web technology stack that's in use to search and then exploit databases will help identify
vulnerabilities in our target's technology stack without direct scanning. Historical data, like older
versions of a company's public API documentation, can be sourced from the Wayback machine.
Internet scanning services enable passive port scanning, subdomain enumeration, web technology

identification, and vulnerability assessments such as Shodan and Censys.

4.5.1.1 Dorking

Dorking is a technique which we can use to gather information about our target, their technology
stacks, infrastructure, endpoints and parameters, exposed data, subdomains, leaked credentials, keys
and tokens (for authentication), file types, possible vulnerabilities, login portals, paths (/api/v1/) and

files. Dorking can work on a multitude of third-party services which gather data about your target.

We can use various third-party services (see Table 25) to search our target domain and discover

different types of information.

Service Resource

Google https://www.google.com

Bing https://www.bing.com

DuckDuckGo https://duckduckgo.com

Shodan https://www.shodan.io

Censys https://search.censys.io

Github https://github.com/search
https://github.com/gwen001/github-subdomains
https://github.com/gwen001/github-endpoints
https://github.com/gwen001/github-regexp

https://github.com/gwen001/github-regexp
https://github.com/gwen001/github-endpoints
https://github.com/gwen001/github-subdomains
https://github.com/search
https://search.censys.io/
https://www.shodan.io/
https://duckduckgo.com/
https://www.bing.com/
https://www.google.com/

Google Hacking Database https://www.exploit-db.com/google-hacking-

database

Table 25: Third-party services that support dorking

However, for APIs, we will want to look for specific paths, parameters and files that could be useful
to us when building out a sitemap of our target. The idea here is to gather as much information as

possible about our target without direct interaction.

Operators Operators Dork Description
site: (...) site:target.com inurl:"/api/" Discovering API paths
inurl: & site:target.com inurl:/api/vl OR |Discovering different API

inurl:/api/v2 OR inurl:/api/v3 |versions

cache: - site:target.com site:api.*.* API Subdomain enumeration
intext: * site:target.com inurl:”/api/docs” |Reveals swagger API
documentation
intitle: L inurl:/graphql OR GraphQL API discovery
inurl:/graphiql
filetype: site:*.target.com inurl:"? Searching for common API

api_key=" OR inurl:"?token=" | parameters

https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database

Table 26: Example Google Dorks for API asset discovery

4.5.1.2 DNS Enumeration

Enumerating your targets domain name system (DNS) can provide us with insights into the target's
infrastructure, revealing information such as web hosts, subdomains, MX, A, CNAME and TXT
records, zone transfers, shadow IT/zombie APIs, third-party integration, DNS servers and host
records. For APIs, we will focus on 'api.target.com'’ related subdomains and note them down to later
investigate and probe. To perform DNS enumeration passively, we can use various tools and

resources, including HackerTarget's DNSdumpster project, see Figure 23.

The advantage here is discovering subdomains as we can use this method to discover developer,
testing and staging environments where security might be more lackadaisical as the developer may
assume that because the subdomains are not publicly listed, then they are secure (security through

obscurity).

dns recon & research, find & lookup dns records

CETCE— T

DNSdumpster.com is a FREE domain arch tool that can discover hosts related to a domain. Finding visible hosts from the
attackers g ective is an important part of the security assessment process.

HackerTarget.com

Figure 23: DNSdumpster search engine to perform passive DNS enumeration

4.5.1.3 Technology Identification

When we start to look at our target, we will want to identify the technology stacks our target is
using. We will want to consider how the tech stack is integrated, how it is running, what version the
software is currently running as and whether it is open source or proprietary. We will mainly focus
on software type and version as this can be used later for identifying whether or not the target

software is vulnerable and has a public exploit available (CVE).

We can use the BuiltWith search engine to enter the domain(s) of our target, and it will return the
web technology stack that our target is using. The type of information it will provide is widgets,
programming languages (PHP), frameworks, content delivery networks (CDNs), mobile support,

content management systems (CMS) and plugins, JavaScript libraries and functions, social media

links, document encoding type (UTF-8) and document standards.

Find out what websites are
Built With

Enter a website address, a technology name or a keyword

Figure 24: Built With technology stack identifier search engine

4.5.1.4 Vulnerability Search

Once we know what software stacks are running, we will want to identify version numbers
BuiltWith finds and cross-reference with a vulnerability and exploit database such as exploit-db (see
Figure 25). At this point, we will not try to run any exploits against the target. However, it just gives
us an idea of how the target manages software updates because if we suspect an old version is
vulnerable and our target is running an out-of-date piece of software, then it's likely other software

and APIs might be out of date as well.

Verified Has App Y Filters V< Reset All

Show| 15 v Search: | wordpress 5
2023-08-04 3 X WordPress Plugin Ninja Forms 3.6.25 - Reflected XSS WebApps PHP Mehran Seifalinia
20230728 < WordPress Plugin AN_Gradebook 5.0.1 - SQLi WebApps PHP Lukas Kinneberg
2022-1017 * X Wordpress Plugin ImageMagick-Engine 1.7.4 - Remote Gode Execution (RCE) (Authenticated) WebApps PHP ABDO10
2022-10-06 3 Wordpress Plugin Zephyr Project Manager 3.2.42 - Multiple SQLi WebApps PHP Rizacan Tufan
20220801 * WordPress Plugin Duplicator 1.4.7 - Information Disclosure WebApps PHP SecuriTrust
2022-08-01 3 X WordPress Plugin Duplicator 1.4.6 - Unauthenticated Backup Download WebApps PHP SecuriTrust
20220729 il X WordPress Plugin WP-UserOnline 2.87.6 - Stored Cross-Site Scripting (XSS) WebApps PHP Steffin Stanly
2022-07-26 3 X WordPress Plugin Visual Slide Box Builder 3.2.9 - SQLi WebApps PHP nut1securlty
2022-06-27 * X WordPress Plugin Weblizar 8.9 - Backdoor WebApps PHP Sobhan Mahmoodi
2022-06-10 3 X WordPress Plugin Motopress Hotel Booking Lite 4.2.4 - Stored Cross-Site Seripting (XSS) WebApps PHP Sanjay Singh
2022-05-11 i X WordPress Plugin stafflist 3.1.2 - SQLi (Authenticated) WebApps PHP Hassan Khan Yusufzai
20220511 * X WordPress Plugin Blue Admin 21.06.01 - Cross-Site Request Forgery (GSRF) WebApps PHP Abisheik M
20220511 * X WordPress Plugin Advanced Uploader 4.2 - Arbitrary File Upload (Authenticated) WebApps PHP Roel van Beurden
2022-04-19 * X WordPress Plugin Elementor 3.6.2 - Remote Code Execution (RCE) (Authenticated) WebApps PHP AkuCyberSec
2022-04-19 3 X WordPress Plugin Popup Maker 1.16.5 - Stored Cross-Site Scripting (Authenticated) WebApps PHP Roel van Beurden

Showing 110 15 of 1,107 entries (filtered from 45,739 total entries) FIRST PRE o 2 3 4 5 74 NEXT LAST

Databases Links Sites Solutions

Figure 25: Searching for the targets software and version to check if an exploit is available via

exploit-db

4.5.1.5 Discovering Historical Data

Discovering historical data can reveal paths, endpoints, parameters and usage examples of your
target API where it is not documented currently in the newest version. This is important to note as
the developer may not have removed old assets from the server, and therefore, discovering older

documentation may reveal hidden assets still lurking.

We can use a tool for this called TheWayBackMachine or waybackurls (see Table 18), which will
accept your target's domain as input, and then you can specify dates by how far back you wish to
go. This can reveal older versions of the API documentation and may go as far back as the API's
initial release, giving us a complete picture of all the past and present functionality, paths, files,
endpoints, version numbers (/api/v1, /v2, /v3) and parameters. We can take this information and
create a custom word list, which we can later use in a directory brute-force attack during our content

discovery phase.

INTERNET ARCHIVE Explore more than 829 billion web pages saved over time

II,I““"HI!"I"H[!"'"H BROWSE HISTORY

Find the Wayback Machine useful? [Eslel\fayy=

T E | [=8
| 2 o K
el 1 = =Y o S——
| = |) -]
L Tools m Subscription Service 1 save Page Now
Wayback Machine Availability API Archive-It enables you to capture, manage
Build your own tools. and search collections of digital content
ithout any technical expertise or hostin SETACE
WordPress Broken Link Checker ;M it Vf“ m— P — .g.ﬂ)
Banish broken links from your blog. acilities. Visit Archive-lt to build and browse Capture a web page as it appears now for use

the collections as a trusted citation in the future.
404 Handler for Webmasters -
Help users get where they were going.

FAC Contact Us erms of service (Dec 31, £014

Figure 26: Discovering historical data with TheWayBackMachine such as documentation

45.2 Active

Active reconnaissance is when we, as the tester, actively interact with our target to collect
information directly. We can utilise active reconnaissance to probe deeper into our target to
understand how their applications and APIs work, how they work together, how they have set up
their infrastructure and mistakes the developer may have made. This could include leaving older
API versions on the server instead of deprecating them, developer and test subdomains, deprecated

parameters and endpoints that could be vulnerable and other common mistakes and oversights.

4.5.2.1 Port scanning

Port scanning our target(s) has many advantages to us as a security tester. First, we will want to
know what ports are open (especially high and non-standard ports) and what services are running on
those ports (identify version numbers). For this, we will use nmap and the nmap scripting engine

(NSE), which will help us port scan our target and perform basic enumeration.

Option Advantage

nmap -sC -sV -A 10.38.1.110 Scans the target for top 1000 TCP ports, uses

default scripts from NSE (-sC), enumerates the

service version (-sV) and uses the aggressive

scan to detect possible operating system (OS)
type (-A), version detection, traceroute and

script scanning (Ball, 2022).

nmap -sV -p- 10.38.1.110

Scans the target for all ports from 1 through to
65535, providing extensive prot scanning
coverage. This allows us to discover high ports,
but may take some time (Ball, 2022). We use -
sV to enumerate the version and —p— to detect all

ports.

nmap -sV —script=graphql-introspection

10.38.1.110

Use the nmap scripting engine (NSE) to inspect
GraphQL endpoints for introspection (see Table
18), which will allow for extensive GraphQL
recon (see Figure 30), assuming the developer
left introspection enabled, which it should not be
in a production environment (Aleks and Farhi,

2023).

Table 27: Nmap scanning API options

8§888,22 10.38.1.110

jl'_l'_

Figure 27: Command example for basic nmap system enumeration - crAPI

PORT STATE
22/tcp open
| ssh-hostkey:
| 256 ©8a9a3829048b3de48ff104ca22f9efd (ECDSA)
| _ 256 f461c3c49c2464ae4c6d851479e7cfb3 (ED25519)
8888/tcp closed sun-answerbook

SERVICE
ssh

VERSION

OpenSSH 8.9p1 Ubuntu 3ubuntu@.3 (Ubuntu Linux; protocol 2.0)

MAC Address: 08:00:27:BB:1E:09 (Oracle VirtualBox virtual NIC)

Device type: general purpose
Running: Linux 4.X[5.X

0S CPE: cpe:/o:linux:linux_kernel:4 cpe:/o:linux:linux_kernel:5

0S details: Linux 4.15 - 5.6
Network Distance: 1 hop

Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

TRACEROUTE
HOP RTT ADDRESS
il @.28 ms 10.38.1.110

0S and Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 15.62 seconds

Figure 28: Enumerating via nmap running services and open ports - crAPI

graphql-introspection.nse 10.38.1.110

Figure 29: NSE introspection enumeration using nmap - DVGA

PORT STATE SERVICE VERSION

5013/tcp open http Ajenti http control panel

| graphql-introspection:

| VULNERABLE:

| GraphQL Server allows Introspection queries at endpoint: Endpoint: /graphql is vulnerable to introspection queries!
| State: VULNERABLE

| Checks if GraphQL allows Introspection Queries.

|

|

|

References:
_ https://graphql.org/learn/introspection/
MAC Address: 08:00:27:BB:1E:09 (Oracle VirtualBox virtual NIC)

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 2@.11 seconds

Figure 30: Identifying GraphQL introspection - DVGA

sudo nmap -sV -p- 10.38.1.110

[sudo] password for kali:
Starting Nmap 7.93 (https://nmap.org) at 2023-09-29 18:11 EDT

Nmap scan report for 10.38.1.110

Host is up (0.00013s latency).

Not shown: 65534 closed tcp ports (reset)
PORT STATE SERVICE VERSION

3000/tcp open ppp?

Figure 31: Scanning all ports and enumerating their services - JuiceShop

4.5.2.2 Subdomain Enumeration

We will also perform subdomain enumeration. This will give us a clear picture of the target's attack
surface. After we enumerate the target domain for their subdomain, we will want to look for
interesting subdomains such as developer, testing, admin, backup, api and possible debugging
consoles. Some administrators think that by not indexing some of their subdomains, they are hidden
and, as such, don't implement security (security through obscurity), and some subdomains might not

be protected behind a firewall or load balancer like the main website might be.

We can enumerate the target subdomains using passive techniques via third-party services,

enumerating SSL/TLS (HTTPS) certificate data and subdomain brute-forcing.

Subdomain
1 api.target.com
2 dev-api.target.com
3 graphql.target.com

vl.api.target.com

auth.target.com

test-api.target.com

Table 28: Common API subdomains

Technique

Description

Tool

subfinder -d target.com | grep

Subfinder is a project discover
tool designed to use third-party
services and optional API keys
to scour the internet and
discover subdomains for your
target. The tools employ both
active and passive techniques to
perform subdomain
enumeration. We can use
arguments to output the
subdomains and their
corresponding IP address. This
allows us to see in-range and

out-of-range addresses.

Subfinder:

https://github.com/projectdisco
very/subfinder

python sublist3r.py -d

target.com

Sublist3r is a passive
subdomain enumeration tool
that accepts the domain of your
target as input and uses various
third-party services to scrape
your target's subdomains. These
include google, yahoo, virus

total, etc.

Sublist3r:
https://github.com/aboul3la/Sub

list3r

amass enum -d target.com |

grep api (Ball, 2022)

Enumerate your target domain
and only output API-specific

related subdomains.

Amass:

https://github.com/owasp-

amass/amass

https://github.com/owasp-amass/amass
https://github.com/owasp-amass/amass
https://github.com/aboul3la/Sublist3r
https://github.com/aboul3la/Sublist3r
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder

crt.sh search bar GUI crt.sh allows you to find all Third-Party Service:

related subdomains to your https://crt.sh/?q=

target domain by fingerprinting

their SSL certificates.

site:”*.target.com” We can use Google Dorks to Third-Party Service:
enumerate the target https://www.google.com
site:”target.*” subdomains and their top-level
domain.

Table 29: Subdomain scanning techniques and tools

4.5.2.3 Walking The Application

Walking the application refers to proxying all our traffic through Burpsuite, clicking on everything
the application offers, and understanding how the application and the API integration works. This
involves clicking all the buttons, entering all data forms, registering a user, logging in, logging out,
uploading, downloading and anything else the application offers that an anonymous and
authenticated user can do. During this process, you will not do anything other than use the
application as the developer intended. Here, we want to record all the requests made and filter the

output for ‘/api' to identify API paths and endpoints.

Here, we use Firefox developer tools in our network tab and filter the requests by filtering for ‘/api'

or '/graphql' in the search bar and also filter by "XHR' to ensure we only see API-related traffic.

https://www.google.com/
https://crt.sh/?q

‘ OWASP Juice Shop

- NN

=]
=
- =]

201}
201}

]
=
=

[
=
=

M EEAEEDEE
= E E E E E E

= = [
= E =

el
=
=

Figure 32: Identifying API endpoints with Firefox developer tools - JuiceShop

Here, we use Burpsute to walk the application and record all incoming traffic, which we can sort

through for API paths and endpoints and start inspecting how they work.

http:/10.28.1.110:3000 GET fapifAddresss/7 200 644 JSON
http:/10.28.1.110:3000 PUT fapi/Basketltems10 200 513 JSON
http:/10.28.1.110:3000 DELETE /api/Basketltems/9 200 386 JSON
http:/10.28.1.110:3000 GET fapifCards 200 386 JSON
http:/10.28.1.110:3000 GET fapi/Deliverys 200 624 JSON
http:/10.28.1.110:3000 GET fapi/Deliverysfl 200 463 JSON
http:/10.28.1.110:3000 GET fapifProducts/24?d=Fri%... v 200 733 JSON
http:/10.28.1.110:3000 GET fapifProducts/6?d=Fri%2... V 200 621 JSON
http://10.28.1.110:3000 GET fapi/Recyclesf 200 432 JSON

Figure 33: Identifying API endpoints with Burpsuite - JuiceShop

Request Response
Pretty Raw Hex g n = Pretty Raw Hex

GET /api/Addresss/7 HTTP/1.1

Host: 18.38.1.110:3@00

Accept: application/json, text/plain, */*

Authorization: Bearer

ey JBeXAi0iJKVIQiLCJhbGei01)SUZIINI IS ey)zdGFOdXMi01 JzdWNjZXNZzIiwiZGFBYST
ey JpZCIGMIESINVZZXJuYW11TjoiTiwiZWlhaWwiOiJoYWNTZXJKNzg4NzhAaGFja2VybWF
uLmivbsSIsInBhc3N3b3JkIjoiMzh1INWMZNDVhNDAIOWVINE3YZkYmJi¥TNLY2V1YjQiLCl
yb2x11joiY¥3VzdGotZXIiLCIkZWx1eGVUb2t1biI6IilsImxhc3RMb2dpbklwIjoiMC4wLjA
uMCIsInByb2ZpbGVJbWFnZSIEIi%he3N1dHMveHVibGliL21tYWdlcy91cGxvYWRZL2ZR1ZmF

HTTF/1.1 200 OK
Access-Control-Allow-Origin:
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self’

X-Recruiting: /#/jobs

Content-Type: application/json; charset=utf-3
Content-Length: 286

ETag: W/"1lle-APPycXHVwcmYBvymx39V8kKghas"

*

F-S TSR S

BRI S UR R

<]

o

1bHQuCc3ZnIiwidGo@cFN1Y3)1dCI6IiIsImlzQWNRaXZ1Ijp@cnV1LC)jemVhdGVkQXQioil 18 Vary: Accept-Encoding
yMDIzLTASLTISIDIyOjE@OjEYLjEZMSATMDAGMDALILC)1cGRhdGVKQXQi0iIyMDIZLTASLTI 11 Date: Fri, 29 Sep 2823 22:19:09 GMT
5IDIyOjE@OEYLJEZMSATMDAGMDAILC I kZWx1dGVKQXQi0m31bGx9LCIpYXQi0jE20TYWMjU 12 Connection: close
SMiNg.sTh2ZnL3Tc4USy4Uyj7egDxntap4Ixo6_faUHrln3PfEE-J4JLnqUt-yjQo2AT4ikPD 13
a350bQ9ILUkn4RWzs5eFirl_xP8lwNtLgWzzKP1lsYSoGinBttgNJwg544w9_mSZwnlWLfgYF 14 {
JQW1EHX4UpKvpSnl3yWCpDLb-PCyGBeBU "status":"success",

5 User-Agent: Mozilla/5.@ (Windows NT 18.0; Win64; x64) AppleWebKit/537.36 "data":{

(KHTML, like Gecko) Chrome/113.8.5672.93 Safari/537.36 "UserId":21,

6 Referer: http://10.38.1.118:3000/ "id":7,

7 Accept-Encoding: gzip, deflate "fullName”:"Hackerman”

2 Accept-Language: en-US, en;g=0.9 “mobileNum”:9876543209,

9 Cookie: language=en; welcomebanner_status=dismiss; token= "zipCode":"CH14BJ",
ey BeXAI0iJKVIQiLCIhbGei0i)SUZIINIIG . ey)zdGF@dXMi01JzdWNjZXNZIiwiZGFOYST "streetAddress”:"parkgate road"”,
6ey pZCIGMIESINVZZXJuYW11IjoiTiwiZWlhaWwiOiloYWNTrZXJKNzgdNzhAaGF]a2VybiF "city":"chester”,
ulmNvbSIsInBhec3N3b3JkIjoiMzh1INWM2ZNDVRNDAIOWVINGE3Y] ZkYmIi¥YTNLY2V1YjQiLCl "state":"cheshire",
yb2x1IjoiY3VzdeItZXIiLCIkZWx1eGVUb2t1bil6IilsImxhc3RMb2dphbklwI joiMC4wLjA "country”:"21 bullvord rd”,
UMCIsInByb2ZphGYJbWFNZSIEIi9hc3N1dHMYcHViIbGLjL21tYWdlecy91cGxvYWRZL2ZR1ZmF "createdAt 2023-09-29T22:15:23.588Z",
1bHQUCc3ZnIiwidGo@cFN1Y311dCI6IiIsImlzQWNeaXZ1Ijp@cnV1LC)jemvhdGVkQXQioil "updatedAt":"2@23-859-29T722:15:23.588Z"
yMDIzLTASLTISIDIyOjE@OjEYLjE2ZMSATMDAGMDALILC)1cGRhdGVKQXQi0iIyMDIZLTASLTI }
5IDIyOjE@OjEYLJE2ZMSATMDAGMDAILC I kZWx1dGVkQXQi0m51bGxOLCIpYXQi0jE20TYWMjU }

SMiN9g. sfb2nL3TcdUSy4UyjT7@gDxntapdZxo6_faUHrln3PfEE- J4)LngUt-yiQo2AT4ikPD
a350bQ9ILUkn4RWzZs5eFirL_xPB8lwNtLgWzzKP1sYSoGinBttgNJwgS44wd_mSZwnlWLfgYF
JQW1EHX4UpKvpSnl3yWCpDLb-PCyGBeBU

1@ Connection: close

Figure 34: Inspecting how the identified API endpoints work - JuiceShop

4.5.2.4 Web Crawling - Spidering

Like with walking the application, this time, we will be fully automating the process of using web
spidering. This involves using a web crawler which will recursively follow all links and sublinks
until it has crawled an entire application. After we have spidered the application, we will have a
sitemap of the target (see Figure 36), and we can use this to once again filter for API endpoints and

paths.

[Alerts Output %% Spider & H# AJAX Spider & WebSockets <=
<¥ Current Scans:0 URLs Found: 112 Nodes Added: 70

: 00 http://10.38.1.110:3000/ ~

Messages
tessed Method URI
@ GET http://10.38.1.110:3000/juice-shop/build/routes/runtime. js
[~] GET http://10.38.1.110:3000/juice-shop/build/routes/polyfils js
[~] GET http://10.38.1.110:3000/juice-shop/build/routes/vendor.js
[*] GET http://10.38.1.110:3000/juice-shop/bulld/routes/main.js
[=] GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/assets/public/f...
@ GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/styles.css
(=] GET http://10.38.1.110:3000/juice-shop/node_medules/serve-index/runtime js
@ GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/polyfils.js
[~] GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/vendor.js
[~] GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/main.js
(=] GET http://10.38.1.110:3000/juice-shop/node_meodules/express/lib/router/assets/p...
[=] GET http://10.38.1.110:3000/juice-shop/build/routes/assets/public/assets/public/fa...
@ GET http://10.38.1.110:3000/juice-shop/node_modules/express/libfrouter/assets/p...
[~] GET http://10.38.1.110:3000/juice-shop/build/routes/assets/public/styles.css
@ GET http://10.38.1.110:3000/juice-shop/node_modules/express/libfrouter/assets/p...
[*] GET http://10.38.1.110:3000/juice-shop/build/routes/assets/public/runtime. js
[~] GET http://10.38.1.110:3000/juice-shop/node_modules/express/libfrouter/assets/p...
[=] GET http://10.38.1.110:3000/juice-shop/build/routes/assets/public/polyfils js

(=] GET http://10.38.1.110:3000/juice-shop/build/routes/assets/public/vendor js

@ GET http://10.38.1.110:3000/juice-shop/build/routes/assets/public/main js

[~] GET http://10.38.1.110:3000/juice-shop/node_modules/express/lib/frouter/assets/p...
[~] GET http://10.38.1.110:3000/juice-shop/node_modules/express/libfrouter/assets/p...
[*] GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/assets/public/a...
[~] GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/assets/public/s...
[=] GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/assets/public/r...
@ GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/assets/public/p...
@ GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/assets/public/v...
[~] GET http://10.38.1.110:3000/juice-shop/node_modules/serve-index/assets/public/...
[~] GET http://10.38.1.110:3000/ftp/

[~] GET http://10.38.1.110:3000/ftp/quarantine/juicy malware linux amd 64.url

Figure 35: Spidering the web application to identify API endpoints - JuiceShop

@ Sites =
@ U E 3

=) Contexts
[@] Default Context

@ Sites
~ @M http//10.38.1.110:3000

[8 GETY/
|] U #8 GET:Materiallcons-Regular woff2
L4 api
[0 4 assets
|] o 48 GET:font-mfizz.woff
|] U8 GET:fip
o fp
[o4& juice-shop
[|atest
|] U8 GET:main.js
|] U &8 GET:pohyfills.js
£ U8 rest
L 8 admin
[U #8 captcha
U #8 GET:languages
[U #& products
0 P 48 user
|] 8 %8 GET:robots.txt
|][0 %8 GET:runtime.js
|] U &8 GET:sitermap.xml
[0 ¥ socket.io
|] U &8 GET:styles.css
|]9 %8 GET tutorial.js
|] Y %8 GET wendor.js

Figure 36: Zaproxy web spidering built the targets sitemap - JuiceShop

We use zaproxy (see Table 18) not only to crawl a web application to identify paths and endpoints,
but zaproxy also has a GraphQL introspection add-on which allows for zaproxy to send queries to a
GraphQL endpoint and perform introspection recon to map the structure of the GraphQL API. From
our initial nmap reconnaissance, we already know that our target has introspection enabled.
Introspection will allow us to perform extensive reconnaissance on the schema, providing insights

into the API's structure and available types and fields, queries and mutations. Effectively, it removes

all the guesswork for us.

b Import a GraphQL Schema

Schema File or LURL

Choose File
Endpoint URL* http://10.38.1.110:5013/graphgl

* indicates a required field
Cancel

Import

Figure 37: Importing GraphQL schema URL endpoint into zaproxy - DVGA

@ Sites
~ B ™ http://10.38.1.110:5013

= |4 graphql

L mutation

LI query

[| subscription
| e POST:graphagl() ({"query":"aaa"})
|1 POST:graphagl()({"query":"

"query ($search_username_capita...)

|| POST:graphal()({"query":"query query ($search_keyword: ...)

| | POST:graphgl(}({"query":"query query { search (keyword....}

Figure 38: GraphQL Introspection query generation - DVGA

= http:/f10.38.1.110:5013
- @ ™ graphgl

= |8 mutation
|1 POST:(O
|10 POST:(0) mutation{ createPaste{ paste{content} } } () ({ "query

mutation{ createPaste{paste{burn}} } () ({ "guery";"mutation { create

""routation { cre
| 0 POST(0) mutation{createPaste{paste{id} } } () ({"query"."mutation { createPa:
|1 POST:(0) mutation{ createPaste{ paste{ipAddr} } } () ({ "query"."mutation { creat

| 10 POST:(O) mutation{ createPaste{ paste{ownerld} } } () ({"query":"mutation { cre

|1 POST:(0) mutation{ createPaste{paste{owner{id}}}} () {{ "guery";"mutation { «

| 10 POST:(0) mutation{ createPaste{ paste{owner{name} }} } () ({ "query":"mutatiol
|1 POST:(0) mutation{ createPaste{paste{owner{pastes{burn}}}}} O ({"query":"
| 10 POST:(0) mutation{ createPaste{ paste{ owner{pastes{content}}}}} (){{"quer
|1 POST:(O

)
)
)
)
)
)
)
)
)
)
|0 POST:(0) mutationd{ createPaste{paste{owner{pastes{ipAddr}}}}} 0 ({{" "query
)
)
)
)
)
)
)
)
)
)

mutation{ createPaste{paste{owner{pastes{id}}}} } O {{"query":"muL
| 0 POST(0) mutation{createPaste{paste{owner{pastes{ownerld} } } } } () ({"quer
| U POST:(0) mutation{ createPaste{paste{owner{pastes{owner{id}}}}}10({"q
| 1 POST:(0) mutation{ createPaste{ paste{ owner{pastes{public}}}} } (0 ({ " "quenry"
|1 POST:(0) mutation{ createPaste{ paste{ owner{pastes{title} } } } } O ({ "query":"r

| 10 POST:(0) mutation{ createPaste{ paste{ owner{pastes{userfAgent}} }+ () ({"qu
|10 POST:(0) mutation{ createPaste{paste{ owner{paste{burn} }} }} () {{"query":"r

| 10 POST:(0) mutation{ createPaste{ paste{ owner{paste{content} } } } 1 () ({ "query
| 0 POST(0) mutation{createPaste{paste{owner{paste{id} } }} } () ({ "query"."mut
|1 POST:(0) mutation{ createPaste{ paste{ owner{paste{ipAddr} } } } } () ({ "query":

| -0 POST:(0) mutation] createPaste{paste{ owner{paste{ownerld}} } } Y () ({"query

Figure 39: Enumerating the GraphQL endpoint via Introspection in Zaproxy - DVGA

4.5.2.5 Technology Identification

As we did with passive reconnaissance, we are now going to perform active web technology stack
identification, the goal here being to identify all the technology running on the server and possible
version numbers, which we can later use to vulnerability scan and cross reference against CVE and
exploit databases to potentially find a working exploit against our target, gain initial access and

escalate our privileges.

We will use two tools, one being Wappalyzer and another called WhatWeb.

Damn Vulnerable Grapt

= C @ O & 10.38.1.110:
KaliLinux #8 KaliTools # KaliDocs N KaliForums & Kali NetHunter Exploit-DB Google Hacking DB OffSec @ OWAGSP API Security P. @ OWASP APISecurity P... % Wel
o Wappalyzer
TECHNOLOGIES MORE INFO * Export
p Q pp JavaScript frameworks Programming languages
DVGA O Zonejs TypeScript
DaM vuLNERASLE craproL YVEICOMe!
APPLICATION O Angular 1529
Damn Vulnerable GraphQL Application, or DVGA, is a vulnerable GraphQL implementation. DVGA allows learning how GraphQL can be exploited as well as d CDN
Font scripts cdnjs
Home Getting Started I3 Font Awesome = Cloudilare
I you aren't et familiar with GraphQL, see the GraphQL Resources section below. Otherwise, start poking around and find loopholes! There are GraphQL Im
 Private Pastes . ¥ ba g
Miscellaneous JavaScript libraries
You can set a "game mode" in DVGA: A beginner level or expert level by clicking on the top bar menu's cube icon and choosing the level. This is a global setir| i
3% Public Pastes Fodomiion R &) auery {351
If you are interacting with DVGA programmatically, you can also set the game mode by passing the HTTP Request Header x -0vcA-HODE set to either Beginnet Federation
© Webpack sovsue &) coreds axz
+ Create Paste Ifthe Header is not set, DVGA will default to Beginner mode or to whatever you previously set in the user interface.
Ul frameworks
& Import Paste
Difficulty Level Explanation @ Boolstrap 453

Upload Past)
L tooaibay Beginner

DVGA's Beginner level is literally the default GraphQL implementation without any restrictions, security controls, or other protections. This is what you would get out of the box in most of the GraphQL implementations without
Star us on GitHub hardening, with the addition of other custom vulnerabiliies.

Hard

DVGA's Hard level is a hardened GraphQL implementation which contains a few security controls against malicious queries, such as Cost Based Analysis, Query Depth, Field De-dup checks, etc.

Figure 40: Web tech stack identification using Wappalyzer - DVGA

TECHNOLOGIES MORE INFO ¥ Export

JavaScript frameworks Programming languages

N Zonejs

TypeScript

© Angular 1523

Font scripts © cdnjs

[3 Font Awesome . (Cloudflare

Miscellaneous JavaScript libraries

Module

; 50% sure = |Query 354
Federation

& Webpack 50% sure 4 core-js 3302

Ul frameworks

£} Bootsirap 453

Figure 41: Wappalyzer results - DVGA

4 OWASP Juice Shop
C @ O & = 10.
KaliTools # KaliDocs X Kali F ali NetHunter = Exploit-DB & Google Hacking DB Pl Security P... @ OWASP AP

. OWASP Juice Shop

TECHNOLOGIES M

All Products JavaScript frameworks

O Zzonejs cdnjs

l @ Angular 1529 . Cloudflare
Font scripts JavaScript libraries
Apple Juice Banana Juice I3 Font Awesome & jauen
351
(1000mI) Apple Pomace (1000mI) ‘ & jQuery
0.89x & corejs 302
1L LR l Miscellaneous -
& Module Federation ul

® Webpack 1 Bootstrap 453
Add to Basket Add to Basket Add to Basket

Programming languages

Typescript

Carrot Juice Eggfruit Juice e Green
(1000ml) (500ml) EruitiEress Smoothie
2.90x 8.99x RS 1.99%

Add to Basket Add to Basket Add to Basket Add to Basket

Figure 42: Web tech stack identification using Wappalyzer - JuiceShop

TECHMOLOGIES MORE INFO ¥ Export

JavaScript frameworks CDN

D Zonejs © cdnjs

@) Angular 1529 . Cloudflare
Font scripis JavaScript libraries
[3 Font Awesome & jQuery 351

4 core-js 3.30.2
Miscellaneous

& Module Federation

Ul frameworks

& Webpack 3 Bootstrap 453

Programming languages

TypeScript

Figure 43: Wappalyzer results - JuiceShop

kali@JT8878: ~

File Actions Edit View Help

Vi | e |}
2 3 http://10.38.1.110:3000
[200 OK] Country[RESERVED][], HTML5, IP[10.3
8.1.110], JQuery[2.2.4], Script[module], Title[OWASP Juice Shop], Unco
mmonHeaders[access-control-allow-origin, x-content-type-options,feature
-policy,x-recruiting], X-Frame-Options[SAMEORIGIN]

)-[~)

Figure 44: Whatweb web tech stack identification - JuiceShop

kali@J78878: ~

File Actions Edit View Help
—)-[~]
) -a 3 http://10.38.1.110:5013
[200 OK] Bootstrap, Cookies[env], Country[RESE
RVED][], Email[dolevablackhatgraphql.com,dolevablackhatgraphql.com,n
ickablackhatgraphgl.com,nickablackhatgraphgl.com], HTML5, IP[10.38.1.1

10], JQuery, Meta-Author[Dolev F.], Script, Title[Damn Vulnerable Grap
hQL Application]

Figure 45: Whatweb web tech stack identification - DVGA

4.5.2.6 Source Code Analysis — JavaScript

Javascript files can be a gold mine for penetration testers as they can contain different API paths
that may not be publicly known, endpoints and API calls, libraries and frameworks, understanding
client-side logic, information disclosure, discovering assets that are not linked anywhere else,

hidden functionality and finding possible developer comments.

Juice Shop website has a hidden scoreboard that is not publicly listed anywhere on the website;

however, if we start enumerating the JavaScript files in our browser developer tools and beautify

the JavaScript code, we can look through the code and identify different paths, one being the

juiceshop’s hidden scoreboard page ‘/scoreboard’.

O Debugger T N

Figure 46: Identifying paths and endpoints in JavaScript files (main.js) - JuiceShop

D Debugger P Metwork {} st

E n.1b

Figure 47: Discloses unknown API paths in JavaScript code — crAPI

4.5.3 Tool Summary

Tool Link

Nmap https://github.com/nmap/nmap

Burpsuite https://portswigger.net/burp

Zap https://www.zaproxy.org

Wappalyzer https://www.wappalyzer.com

Whatweb https://github.com/urbanadventurer/WhatWeb

Dev Tools (FireFox) https://www.mozilla.org/en-US/firefox/
developer

GraphQL Introspection script for nmap https://github.com/dolevf/nmap-graphgl-
introspection-nse.git

Table 30: Tools used summary

4.6 Content Discovery

When testing an application and its APIs, we will want to discover content (Shah, 2021) that may
exist but is not publicly accessible (unlinked content) to the user or known to the tester. This could
include finding old parameters, endpoints, paths, files, backup files, older software versions,
administration panels, directories and open indexing, configuration files and exposed services that

have not implemented proper authentication.

https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://www.mozilla.org/en-US/firefox/developer
https://www.mozilla.org/en-US/firefox/developer
https://github.com/urbanadventurer/WhatWeb
https://www.wappalyzer.com/
https://www.zaproxy.org/
https://portswigger.net/burp
https://github.com/nmap/nmap

4.6.1 Subdomain Brute-Forcing

We have primarily used passive and active techniques to enumerate subdomains; however, we now
want to brute-force our targets DNS to discover new subdomains and virtual hosts that might not
have been found via passive techniques. Brute-forcing DNS will allow us to find newly registered

subdomains. We will use GoBuster and a word list to brute-force against.

GoBuster to brute-force DNS:

Description Command

GoBuster is used to brute-force |gobuster dns -d target.com -w
subdomains of your target /usr/share/wordlists/amass/subdomains.lst
using a word list of common

subdomain names.

Table 31: GoBuster subdomain brute-force

4.6.2 Directory Brute-Forcing

When we perform brute-forcing of any kind, it will be beneficial for us to use API-specific word
lists to better narrow down and identify endpoints, files and directories. If we use standard web
application word lists, we will be sending a lot of junk requests, knowing we probably won't get a

response.

/Hacking-APIs/Wordlists/api_superlist

/Admin

Figure 48: Directory brute-forcing against Pixi using API specific word lists

Developers may no longer be using specific directories (deprecated) or have “hidden” directories
that they think are “hidden” because they are unlinked. Using directory brute-forcing, we can

attempt to uncover these assets and potentially discover configuration, developer and system files
that contain credentials or secrets. We may also find directories with insufficient permissions. See

below for example directories we might hope to find:

Directory Type
/api Where the API is hosted.
V1 Specifies the API‘scurrent or previous version.
/login Login page.
/auth Authentication API endpoint.
/register Registration page for users.
/playground Integrated development environment in the
browser on the API endpoint.
/console Developer debugger console.
/graphql Graphgl endpoint. It may allow introspection
queries.
/graphiql Graphgl endpoint.
/backup Backup directory. May allow directory listing.
/swagger Swagger documentation.
/admin Admin login panel.
/token It may allow for refreshing, generating or
revoking authentication tokens.
/.env Exposes database and server credentials.

Table 32: Common API directories to look for

- ir -1 f -w fusr/share/wordlists/Hacking-APIs/Wordlists/api_superlist

Gobuster

@TheColonial) & Christian Mehlmauer (@firefart)

Wordli
Ne tatus codes:

Finished

Figure 49: Directory brute-forcing against DVGA

scan http 8.1.110:8000/ fusr/share/wordlists/routes-large.kite

2be@d5f5d71

Figure 50: Using Kiterunner to identify different API paths — Pixi (Ball, 2022)

HTTP Method Path
GET http://10.38.1.110/api/<BRUTE-FORCE HERE>
GET http://10.38.1.110/api/v1/<BRUTE-FORCE HERE>
GET http://10.38.1.110/v1/<BRUTE-FORCE HERE>
GET http://10.38.1.110/<BRUTE-FORCE HERE>

Table 33: Brute-force paths to discover directories

4.6.2.1 File Brute-Forcing

Similar to directory brute-forcing, where we are looking for specific directories, here we are looking
for specific files that might interest us and API file extensions that we are looking to find with our

brute-forcing are:

File Type

json Common with Rest and GraphQL APIs

http://10.38.1.110/v1/
http://10.38.1.110/v1/
http://10.38.1.110/api/v1/
http://10.38.1.110/api/

xml Common with SOAP APIs

.yaml Common with documentation and specification

.graphql Common with GraphQL APIs

Table 34: Common API file types

Some misconfigurations we might find are:

File Type

Developer files Files may have credentials and internal
addresses to internal systems

Backups May contain full or partial critical backups of
the system

Configuration files May contain system secrets such as keys and
tokens

API endpoints Exposing the functionality of a API

API swagger files Might be a API documentation file

API specification files Defines the structure and expected behavior of
the API

Table 35: Common misconfigurations and what to look for

An excellent tool for endpoint discovery is called Kiterunner (see Figure 50), designed specially to
discover API endpoints and comes with a set of API word lists. Another tool we can use is GoBuster
(see Table 18), which is mainly a directory brute-forcer but can be used to discover endpoints and

files. The power of these tools comes from the word lists you provide.

4.6.3 Endpoint Analysis

When performing endpoint analysis, we seek to find authentication requirements, analyse endpoint
functionality, test how the endpoints were intended to be used, analyse endpoint responses, and
discover excessive data exposure (emails, usernames, passwords, phone numbers, IDs, security
status such as 2FA enabled or disabled), analysing verbose error reporting, and API technology

specific misconfigurations due to poor implementation (Ball, 2022).

Here, we find in VAmPI a user endpoint where you can request a valid username on the API
endpoint (/users/v1/admin) and see all of its information, such as the email address used to register

the account. In the real world, this would be a breach of personal user information and could be

weaponised on mass to gather all the site users information, resulting in a data breach for the target.
We use ffuf and a username wordlist to enumerate the endpoint for all valid site user emails, and

you can see by requesting their endpoints that their corresponding email addresses appear.

J/usr/share/wordlists/seclists/Usernames/xato-net-10-million-usernames.txt

o-net-10-million

B, Words: &, : 1, Duration: 1@ms]

Duration: 2@ms]

, Duration: 79ms]

Duration: 87ms]

: Duration:

Figure 51: Enumerating a user endpoint, finding all site users and their corresponding email

addresses — VAmPI

i lali@J78878: ~

File Actions Edit View Help
http://10.38.1.110:
{"username”: "admin”, "email":

http://1@ .1.118:500
rname”: “"namel”, "email":

http://10 5000 ers,/v1l/name2
{"username”: "name2 - : com"}

Figure 52: Discovered endpoints allows us to enumerate the registered users email addresses -

VAmPI

Request

1
£
3
4

[%)]

o

J
]
n

HOST: L. 0. 1 8858
sec-ch-ua: "Chromium";v="113", "Not-A.Brand" w="24"

Content-Type: application/json

sec-ch-ua-mohile: 70

Authorization: Bearer

ey JhbGci0iJSUzIINII9. ey zdWIL101JoYWNTZX)tYWSABWFpbCSjb201iLClyb2x1TjoidXN1ciIsImlhdCIGMTYSNjAYOTMS
NCwiZXhwIjoxNjk2ZNjMOMTkETQ. gxHzOEMKEPttxfcQNALDK7gnFKziYpyzvIcNRUx89BtnIMcZTlc)-XumLPUKHglgllUic3
MBBQBrBNcLKYgRhKhpg_jQsuRul-XRCX-ND_npbmfaP97NfYoMF1KFsoWP2UbET7hyr24rpSpHc-ejCghljxVWB1IFTH106b6NM
xB2TkBIaml400aw3VIVCHI6ahl7rpoQcxY2WiJa2NNusS4SHzenbCZ67ZsxL Jh-HdBgfcNpF4AcQg4G2E4LmjHKINNDT_LThJ9
ZRbZHI JW4_FHVsSWIW1DUyRGYMNNTusWDNpHNCYzXba@61iG_3LQrREGEKBhExQbTiTyMInFixFrEUQ

7 User-Agent: Mozilla/5.@ (Windows NT 10.8; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

[T e e}

Chrome/113.8.5672.93 Safari/537.36
sec-ch-ua-platform: "Linux"
Accept: */*

10 Sec-Fetch-Site: same-origin

11 Sec-Fetch-Mode: cors

12 Sec-Fetch-Dest: empty

12 Referer: http://127.8.0.1:8888/post?post_id=NRhigm¥dCcE7LnoJLVcBtW
14 Accept-Encoding: gzip, deflate

15 Accept-Language: en-US5,en;g=0.9

16 Connection: close

Pretty Raw Hex Render

[Ep—
- =

Figure 53: Request made to commuity post — crAPI

Response
n

HTTF/1.1 200 0K

Server: openresty/1.17.8.2

Date: Fri, 29 Sep 2023 23:16:46 GMT

Content-Type: application/json

Connection: close

Access-Control-Allow-Headers: Accept, Content-Type, Content-Length, Accept-Encoding,
X-CSRF-Token, Authorization

Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Origin: *

Content-Length: 315

[I R TV N)

o

(o < I

{
"id":"NRhigmYdCcE7LnoJLVcBti",
"title":"Title 3",
"content":"Hello world 3",
"author":{
"nickname": "Robot",
"email”:"robot@@l@example.com”,
"wehicleid”:"c@100278-e9b4-4a4d-9eba-dba®49f9az2m7 ",
"profile_pic_url":"",
"created_at":"2023-88-25T00:20:28.248L"
Y.
"comments”: [
1.
"authorid”:3,
"CreatedAt":"2023-08-25T00:20:28.2482"

Figure 54: Excessive data exposure of user information (email) from public user posts - crAPI

4.6.4 API Version Discovery

APIs can have common naming schemes for their version paths, such as ‘/api/v1’ or ‘/api/v2/’, etc.
This indicates the current or previous version of the API in use by the developer. The bigger the
number, the newer the version it is. We can enumerate the versions from 0 through to 10 to test how

many versions of the API exist and determine the latest and oldest versions of the API.

In newer versions of APIs, developers fix vulnerabilities and improve functionality. If we can
discover older API versions on the server, we may discover old vulnerabilities still present, even if

they were fixed in the newest version.

10.38.1.110:5000/usersiv1f = +

& 10.38.1.110) s

KaliLinux #8 KaliTools * KaliDocs & KaliForums X Kali NetHunter Exploit-DB Google Hacking DB OffSec

Figure 55: Manually enumerating version number, ‘/v1’ - VAmPI

10.38.1.110:5000/usersfv2 x +

« C @ & 10.38.1.110 .

KaliLinux @8 KaliTools = KaliDocs M KaliForums X Kali NetHunter Exploit-DB Google Hacking DB OffSec

Figure 56: Manually enumerating version number, ‘/v2’ - VAmPI

4.6.5 Parameter Fuzzing

Parameter fuzzing refers to identifying parameters on the target's API and fuzzing them to discover
old or undocumented parameters. While doing this, we can also fuzz the endpoint after the

parameter for common vulnerabilities, such as local file inclusion (LFI).

A common parameter and value endpoint is: '?id=123', where ‘id’ is the parameter and ‘=123’ is the

value. We can fuzz ‘123’ using LFI payloads (/etc/passwd) and fuzz the ‘id’ for parameters.

Example fuzz (FUZZ being a placeholder for Description

parameters to be fuzzed)

ffuf -u "http://10.38.1.110:3000/api/v1/book/?
FUZ7=123" -w
/usr/share/wordlists/seclists/Discovery/Web-

Content/burp-parameter-names.txt

Here, we fuzz the ‘id’ parameter to discover
current, new and old parameters. We want to pay
special attention to old and deprecated
parameters, which we can cross-reference
against the API documentation and start testing
for vulnerabilities such as local file inclusion
(LFI), sequel injection (SQLi), remote file
inclusion (RFI) and other vulnerabilities such as

command injection.

ffuf -u "http://10.38.1.110:3000/api/v1/book/?
id=FUZZ" -w
/usr/share/wordlists/seclists/Fuzzing/LFI/LFI-
Jhaddix.txt

After we fuzz the parameter, we start to fuzz the
endpoint value. We can automate vulnerability
testing by taking the different parameters we
previously discovered and fuzz the endpoints
using payloads (‘/etc/passwd’) on the endpoint
to find vulnerabilities such as local file inclusion
(LFI), sequel injection (SQLi), remote file
inclusion (RFI) and other vulnerabilities such as

command injection.

Table 36: Parameter fuzzing using ffuf

4.6.6 Tool Summary

Tool Link
GoBuster https://github.com/OJ/GoBuster
Kiterunner https://github.com/assetnote/Kiterunner
API word lists https://github.com/hAPI-hacker/Hacking-APIs
Ffuf https://github.com/ffuf/ffuf
Seclists https://github.com/danielmiessler/SecLists

Table 37: Tools used summary

https://github.com/danielmiessler/SecLists
https://github.com/ffuf/ffuf
https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/assetnote/kiterunner
https://github.com/OJ/gobuster

4.7 Vulnerability and Misconfiguration Scanning —
Automated

Vulnerability scanning is when we scan for common security issues (CVEs) on mass against a
target(s) to check for low-hanging fruit vulnerabilities. This stage is important, but not to focus on
or rely on, as scanners may return false positives or junk data. The benefit here is covering a lot of

ground quickly (WAFs may block you).

kali@J78878: ~

File Actions Edit View Help

T C ent
for current scan:
Running ht on input host
Found 1 URL om httpx

Templa : 1191 (Reduced 113
i i E] http

ecurity] [
10] [

ymain-polic

Figure 57: Automated vulnerability scanning — Nuclei

4.7.1 Tool Summary

Tool Link

Nuclei https://github.com/projectdiscovery/nuclei

Table 38: Tools used summary

https://github.com/projectdiscovery/nuclei

4.8 API Analysis

API Analysis involves testing the functionality and behaviour of the API to identify potential
vulnerabilities. Here, we seek to analyse how the API is intended to work and see if we can discover

vulnerabilities within.

4.8.1 Broken Object Level Authorisation - BOLA

A Broken Object Level Authorisation (BOLA) vulnerability (OWASP, 2023) typically exists when a
user authenticates, and due to improper authorisation of the authenticated user, BOLA allows user A

to access user B's data without authorisation.

To find and exploit BOLA, we will register two accounts, identify the user IDs (or objects) and then
swap the resource ID from user A to user B. If we can access their data from our account, this is a
sign of a BOLA vulnerability. To adhere to best ethical practices, we will register and use two

accounts belonging to us, Mechanic and Hackerman.

4 Burp Suite Community Edition v2023.4.3 - Temporary Project

Burp Project Intruder Repeater Window Help
Dashboard Target Proxy Intruder Repeater Collaborator Sequencer Decoder Comparer Loegger Extensions Learn {5} settings
Intercept HTTP history WebSockets history {8} Proxy settings

Re-enable

Filter: Hiding CSS, image and general binary content |®
Host Method URL Params Edited Status code Length MIME type Extension Title

22 NETpL/IOCAINOSTBEES GEl Iworksnopfapl/snoporaers/ail 200 530 J50M

23 http:/flocalhost:8888 GET Iworkshopfapifshop/orders/1 200 799 JSON

24 http:/flocalhost:8888 GET Iworkshopfapifshepforders/fall 200 530 JSON

25 http:filocalhost:8288 POST Jworkshopfapifshopforders/return_orde... v 200 72 JSON

27 http:/flocalhost:8888 GET Jworkshop/fapi/shop/products 200 408 JSON

28 http:/flocalhost:8888 GET Jcommunity/apifv2fcommunity/posts/r... 200 1310 JSON

el http:/flocalhost:8888 GET Jcommunityfapifv2fcommunity/posts/M... 200 680 JSON

32 http:/flocalhost:8888 POST Jeommunity/apifv2fcommunity/posts/N... v 200 900 JSON

35 http:/flocalhost:8888 GET Jcommunity/apifv2fcommunity/posts/r... 200 1519 JSON

37 http:fflocalhost:8888 GET Jcommunityfapifv2fcommunity/posts/C... 200 680 JSON

39 httpifflocalhost:82888 GET Jcommunity/apifv2/community/postsir.. 200 1519 JSON

a1 http:/flocalhost:8888 GET Jcommunity/apifv2fcommunity/posts/T... 200 678 JSON

Figure 58: Walking the application with Burp saving request and responses

After walking the application, we have identified a possible endpoint:

Endpoint Description
/community/api/v2/community/posts/ This endpoint in the crAPI application identifies
T4PNUPvKjnWoBDT3wNqZQd different user posts with a user ID, and when we

make a request to this endpoint, we can see the
username and the registered email of the user.
The string as the endpoint is random; however,
upon response inspection, we can see this is a

user ID of the original poster. See Figure 59.

Host

http:/ilocalhost:8888
http:filocalhost:8888
httpifilecalhost:8888
httpi/flocalhost:8888
httpifilecalhost:8888
httpifilecalhost:8888
httpifilecalhost:8888
httpifilecalhost:8888
httpifilecalhost:8888

httpifilecalhost:8888
httrelllaralhnct-aaaa

Table 39: Identified Broken Object Level Authorisation (BOLA) endpoint

Method
GET
GET
POST
GET
GET
POST
POST
GET
GET
GET

~ET

URL
fcommunity/apif2fcom...
fcommunity/apifv2fcom...
fcommunity/apifv2fcom...
fcommunity/apifv2fcom...
fcommunity/apifv2fcom...
fidentity/apifauth/login
fidentity/apifauthfsignup
fidentity/apifv2/userfdash...
fidentity/apifv2ivehiclefv...

fmanifest.json
deinnnm

Params

Status code
200
200
200
200
200
200
200
200
200

200
00

Length
680
680
900
678
1519
967
526
617
425

803
1Aan

MIME type
JSON
JSON
JSON
JSON
JSON
JSON
JSON
JSON
JSON

JSON
LTI

FraDl

Title

Comment

Time requested
13:24:38 6 Se...
13:24:27 6 Se...
13:24:32 6 Se...
13:24:40 6 Se...
12:24:40 6 Se..
13:23:54 6 Se...
13:23:49 6 Se...
13:25:58 6 Se..
13:25:58 6 Se..

13:23:27 6 Se..
12727 A Ca

Figure 59: Identying endpoint in Burpsuite HTTP history after walking the application - crAPI

Request

[S I

[T) IR S N |

Raw

Hex

Bearer

"Chromium"” :v="113",
Content-Type: application/json
sec-ch-ua-mobile: 70
Authorization:

"MNot-A.Brand” :v="24"

GET Fcommunity!apiva!community!posts!TdPNUPijnNoBDTBquEQd HTTP/1.1
Host: localhost:2888
sec-ch-ua:

i

\n

eyJhbGeci0iJSUzIINII9 . ey zdWIi0i JoYWNTZXJTYWSAZZ 1haWwuY 29t Iiwicm9sZSI6InVzZXIiLCIpY X
Qi0JjE20TOWMjEwWMzY sImVAcCIGMTYSNDYyNTgzNn@ . JgTUL lwglugZ TARtddktf-7Lx4ULge KpckMc CAYD
CsMXLDveTrKkFj8_1CrfTzvwIVprskHBDMz083Z3cF48woF 520K - - fGdw3LeNeiexnoPVho3GTDOLIpOS T
CZ9gN_SN1pZuVIBB-Uu0_g8l865QuiHuxZgkWsNMWUY lbmgHcEf_7QAYotScEgUodTrXRng@SIcWGoOLY JNN
WFOE4Lj_4ZXhzxLG-zm-DtAGYXFSVSXplXnRIxuD4n3gf70zKVNTI1BFPGMTVHM-bgkZBUWURR]LyoeASSg

ttNVvADokowWijoatalugPpSTMAXAUNGZFaN_YKTRTOjOdIMPoTA

7 User-Agent: Mozilla/5.@ (Windows NT 18.8; Wintd; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/113.8.5672.93 sSafari/s37.36

(Vs s =]

sec-ch-ua-platform:
Accept:
18 Sec-Fetch-Site: same-origin

'I'

11 Sec-Fetch-Mode: cors
12 Sec-Fetch-Dest: empty

12 Referer: http://localhost:8888/post?post_id=T4PNUPVKjnWoBDT3wNgZQd

"Linux"

14 Accept-Encoding: gzip, deflate

15 Accept-Language: en-US,en;g=0.9
16 Connection:

17

close

Figure 60: HTTP GET Request made to the API endpoint - crAPI

Response
n

dl

Pretty Raw Hex Render

HTTP/1.1 208 0K

Server: openresty/1.17.8.2

Date: Wed, B6 Sep 2023 17:24:42 GMT

Content-Type: application/json

Connection: close

Access-Control-Allow-Headers: Accept, Content-Type, Content-Length,
Accept-Encoding, X-CSRF-Token, Authorization
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Origin: *

Content-Length: 313

LEA I = TR A

o

O 0o =l

[
= =

"id": "T4PNUPvKjnWoBDT3wNgZQd",
"title":"Title 1",
"content”:"Hello world 1",
"author":{
"nickname"” : "Adam" ,
"email": "adam@@7@example.com"”,
"vehicleid":"e2d34edd-ebc9-4alc-8f37-e2c@73a656b0",
"profile_pic_url":"",
"created_at":"2023-08-25T00:20:28.23871"
|
"comments”: [
1.
"authorid":1,
"CreatedAt":"2023-08-25T@0:20:28.2387"

Figure 61: Response data of user information from endpoint - crAPI

However, whilst using the crAPI application, there is no way to discover other users information.

Good Morning, hackermant n

Vehicles Details + Add a Vehicle

No Vehicles Found

Your newly purchased Vehicle Details have been sent to you email address. Please check your email for the VIN and PIN code of your
vehicle using the MailHog web portal. Click here to send the information again

™ MailHog E) GitHub

« [2 e
© Connected

From no-reply@example.com Show headers ¥
nbox (5) Subject Welcome to crAPI

To hackerman@example.com
@ Delete all messages
HTML Plaintet Source

Jim Hi hackerman,
Jim is a chaos monkey. We are glad to have you on-board. Your newly purchased vehiche details are provided below. Please add it on your crAPI dashboard.

Find out more at GitHub.

Your vehicle information is VIN: 7ZEHTD50YEVE658502 and Pincode: 8886
Enable Jim

We're here to help you build a relationship with your vehicles.

Thank You & have a wonderful day !

Warm Regards,
crAPI - Team
Email: support@crapi.io

This E-mail and any attachments are private, intended solely for the use of the addressee. If you are not the intended recipient, they have been sent to you in error: any use of information in them
is strictly prohibited.

Figure 62: Using the application as intended to learn how it works - crAPI

Here, we registered a user, ‘hackerman’, had the application send us an email, as seen in Figure 63,

and entered our car details into the “Add a Vehicle” tab.

Verify Vehicle Details

* Pin Code: ‘ 8886 ‘

*VIN: | TEHTDS0YEVEG5B502

Verify Vehicle Details

Figure 63: Using emailed information and entering it into the application

Upon entering the information (unique to us), we are presented with our personal vehicle page. It is

important to note that only the user ‘hackerman’ is supposed to be authorised to see this page.

Good Morning, hackerman! n

Vehicles Details

VIN: TEHTD50YEVE658502

et
o

L &

37°1400.0°N 115°48'30.0'W
Area 51, NV,USA

Company :

Model :

Fuel Type :

Year:

& Contact Mechanic

BMW
5 Series
PETROL

2023

Figure 64: Personal vehicle page of the Hackerman account

We will repeat this process for the mechanic user and then look for a resource identifier in the

"Vehicle Details' page and try to access the mechanic's information from the Hackerman account.

Here, we identified a resource identifier on the vehicle page, and we can see that this resource ID

identifies the car's real-world location using latitude and longitude coordinates (not something you

would want another user to be able to see).

33ec3a93-9ff0-4d0f-9d43-9a60073f1d06

User Endpoint Resource ID
Hackerman |http://127.0.0.1:8888/identity/api/v2/vehicle/ a3c7cf58-2140-4c1a-93bf-
a3c7cf58-2140-4c1a-93bf-ca05d63eb795 ca05d63eb795
Mechanic |http://127.0.0.1:8888/identity/api/v2/vehicle/ 33ec3a93-9ff0-4d0f-9d43-

9a60073f1d06

Table 40: Identified endpoint to test for BOLA

Now that we have identified this endpoint and ID, we will change the endpoint of '/vehicle' to the

mechanic's ID, and if we can see their data from the hackman's account, then this would be BOLA

exploitation.

http://127.0.0.1:8888/identity/api/v2/vehicle/33ec3a93-9ff0-4d0f-9d43-9a60073f1d06/location
http://127.0.0.1:8888/identity/api/v2/vehicle/33ec3a93-9ff0-4d0f-9d43-9a60073f1d06/location
http://127.0.0.1:8888/identity/api/v2/vehicle/a3c7cf58-2140-4c1a-93bf-ca05d63eb795
http://127.0.0.1:8888/identity/api/v2/vehicle/a3c7cf58-2140-4c1a-93bf-ca05d63eb795

Request Response

P Raw Hex 8w = Pretty Raw Hex

1 GET /fidentity/api/v2/vehicle/a3c7cfS8-2140-4cla-93bf-ca05d63eb795/location HTTP/1.1 1 HTTP/1.1 200

2 Host: 127.0.0.1:8888 2 Server: openresty/1.17.8.2

3 sec-ch-ua: 3 Date: Wed, 06 Sep 2023 18:14:16 GMT

4 Content-Type: application/json 4 Content-Type: application/json

S sec-ch-ua-mobile: 70 5 Connection: close

& Authorization: Bearer 6 Vary: Origin
eyJhbGei01 ISUZI 1NLJS. eyl zdWIiOlJoYWNrZX) tYWSAZXhhbXBsZS5)b201L CIyb2x 11 jo1dXNLeiIsImLhdCIBMTY Vary: Access-Control-Request-Method
SNDAYMzg2MSw1 ZxhwT j oxNjkoNj I4N] Y xfQ. 1bEhbmh1gal QWHE2NeqNFbPNQy ABMHEKpSaSh_HPVvw3UVGk rZiEUfYM 8 Vary: Access-Control-Request-Headers
nNRDYmUDZBUCR7xY - LqSY rCc_E1BZCZg2IRe6CETYR7adLLK6bSY UOENK vBsZVKuCkk SS_e7PWK rnT4gDj vZygUONSSY a 9 X-Content-Type-Options: nosniff
1 AFMBGO] EvHncHY ghTGrPmeYG) V1 - kShGhegkqSt_RVQuAMNSxGDtSwT Z8yFMHbGU- Qm22BMGenOokhtde8v) 27Rcoll 10 X-XSS-Protection: 1; mode=block
3Lgh8dvizhevvei8ltksnY vX88KhmyNWRpqYU2- 01EuljUxnNTAS_olLhcoOOEzOWp_YZIL1106wpMhy7C3dIVgUBUESL 11 cache-Control: no-cache, no-store, max-age=0, must-revalidate
ocPLAafNEA Pragma: no-cache

7 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) ApplewWebKit/537.36 (KHTML, like Gecko)
Chrome/116.0.5845. 141 Safari/537.36

Expires: O
X-Frame-Options: DENY

8 sec-ch-ua-platform: " 1S Content-Length: 147

9 Accept: */* 16

10 Sec-Fetch-Site: same-origin 7l

11 Sec-Fetch-Mode: cors "carld®:"a3c7cfS8-2140- 4cla- 93bf - ca05d63eb 795",
12 Sec-Fetch-Dest: empty “vehicleLocation":{

13 Referer: http://127.0.0.1:8888/dashboard wid":7,

14 Accept-Encoding: gzip, deflate "latitude” 7.233333",

15 Accept-Language: en-GB,en-US;q=0.9,en;q=0.8 “longitude":"-115.808333"

16 Connection: close »
17 “fullName® : " hackerman®

Request Response
Raw Hex E n = Pretty Raw Hex
1 GET /identity/api/v2/vehicle/33ec3a93-9ff0- 4dOf - 9d43- 9a60073f 1d06/Location HTTP/1.1 1 HTTP/1.1 200
2 Host: 127.0.0.1:8888 2 Server: openresty/1.17.8.2
3 sec-ch-ua: 3 Date: Wed, 06 Sep 2023 18:15:57 GMT
4 Content-Type: application/json 1 Content-Type: application/json
S sec-ch-ua-mobile: 70 S Connection: close
6 Authorization: Bearer 5 Vary: Origin
eyJhbGci01 JSUZI1INLJS. ey)zdWIiOiJoYWNrZX)tYWSAZXhhbXBsZS5jb20iLClyb2x 11 joidXNLeiIsImLhdCIBMTY 7 Vary: Access-Control-Request-Method
SNDAYMzg2MSwi Zxhwl J oxNjkoNj I4N]YxfQ. 1bEhbmh gL QWHE2NeqNFbPNQy ABMHEKpSash_HPVvw3UVGkrziEUfYM 8 Vary: Access-Control-Request-Headers

NRDymuD7BUcR7xY - LqSY rCc_E1BZCZg2IRe6CETYR7ad 1 LK6bSYUOENK vBsZVKUCkk SS_e7FWK rnT 4qDj vZygUONSSY a 5 X-Content-Type-Options: nosniff

I AFMBqO] EvHncHY ghTGrPmeY G VL - kShGhe8kqSt_RVquAMnSxGDtSwT Z8yFMHbGU- Qm22BMGenOoKhtd9Bv] 27Rcoll 0 X-XSS-Protection: 1; mode=block
3Lgh8dVJ2hevvB18JtksnYvX88KhmyMWRpqYL2- 01Eu1jUxnNT AS_oLhcoOOEzOWp_YZIL1106wpMhy7C3dI VgUBUEST 1 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
ocPL44afNFA 2 Pragma: no-cache

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) 3 Explres: O

Chrome/116.0.5845.141 Safari/537.36 1 X-Frame-Options: DENY

8 sec-ch-ua-platform: "* Content-Length: 148

9 ACcept: */*

10 Sec-Fetch-Site: same-origin

11 Sec-Fetch-Mode: cors "carId":"33ec3a93- 9ff0- 4dof - 9d43- 9a650073f 1do6",
12 Sec-Fetch-Dest: empty "vehicleLocation":{

3 Referer: http://127.0.0.1:8888/dashboard nidv:4,

14 Accept-Encoding: gzip, deflate "latitude® .4850772",

15 Accept-lLanguage: en-GB,en-US;q=0.9,en;q=0.8 "longitude":"-122.1504711"

16 Connection: close T
"fullName®: "mechanic”

}

Figure 65: Proof of concept of finding and exploiting BOLA to access another users data

Here, we can see the other user’s account information without being authorised as that user.

Alternative tool Alternative to Link

Jaeles Nuclei https://github.com/jaeles-
project/jaeles

RustScan Nmap https://github.com/RustScan/

RustScan

Feroxbuster Ffuf https://github.com/epi052/

feroxbuster

Postman Burpsuite https://www.postman.com

Shuffledns Subfinder https://github.com/
projectdiscovery/shuffledns

GraphWO0of Nmap NSE GraphQL https://github.com/dolevf/

https://github.com/dolevf/graphw00f
https://github.com/projectdiscovery/shuffledns
https://github.com/projectdiscovery/shuffledns
https://www.postman.com/
https://github.com/epi052/feroxbuster
https://github.com/epi052/feroxbuster
https://github.com/RustScan/RustScan
https://github.com/RustScan/RustScan
https://github.com/jaeles-project/jaeles
https://github.com/jaeles-project/jaeles

Introspection script graphw0O0f

Ghauri Sqlmap https://github.com/r0oth3x49/
ghauri
PayloadsAllTheThings Manual payload testing https://github.com/

swisskyrepo/
PayloadsAllTheThings

Searchsploit Exploit-db search engine https://www.kali.org/tools/
website exploitdb/#searchsploit
Katana Web crawler — ZAP https://github.com/

projectdiscovery/katana

Whatruns Wappalyzer https://www.whatruns.com
Arjun GoBuster https://github.com/sOmd3v/
Arjun

Table 41: API Hacking Tool alternatives to what has been used

Skill Type Skill

BOLA To discover BOLA vulnerabilities, seek to identify resource
identifiers or objects primarily as the authenticated user using
two accounts, both registered by you, to stay within ethical
bounds and simply swap the user account ID between the
accounts until you can access the other user's data. If you can
access the other user accounts data or functionality only meant
for that specific user, this could possibly be a BOLA

vulnerability.

GraphQL Introspection If your target has forgotten to turn off GraphQL introspection
on their ‘/graphql’ endpoint, then you can enumerate it to build
an entire GraphQL schema of your target, allowing for deep and

extensive recon, removing all the guess work needed.

Tool:
https://github.com/swisskyrepo/GraphQLmap

SQLi To quickly scan your target's endpoints and parameters for SQL

https://github.com/swisskyrepo/GraphQLmap
https://github.com/s0md3v/Arjun
https://github.com/s0md3v/Arjun
https://www.whatruns.com/
https://github.com/projectdiscovery/katana
https://github.com/projectdiscovery/katana
https://www.kali.org/tools/exploitdb/#searchsploit
https://www.kali.org/tools/exploitdb/#searchsploit
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/r0oth3x49/ghauri
https://github.com/r0oth3x49/ghauri
https://github.com/dolevf/graphw00f
https://github.com/dolevf/graphw00f

injection vulnerabilities, web crawl your target, save the output

to a file and then run that through sqlmap.

sqlmap -m endpoints.txt —batch —answer="redirect=N"

(Enlacehacktivista, n.d) (see Table 41)

Dorking

Use Google dorks to perform subdomain enumeration and
discover assets, version numbers, documentation, paths and

endpoints.

Use GitHub dorking to discover for your target to see if the
developers made any mistakes or third parties who have worked
for your target before, such as exposing API keys, tokens or

private code repositories.

Nmap

nmap -sC -sV --script vuln 10.38.1.110

Directory Brute-force

Use directory brute-forcing tools and word lists to uncover

misconfigurations and exposed assets.

Tools such as GoBuster and word lists can be used to discover
exposed assets and uncover misconfigurations such as exposed
backups, configuration files, and developer files that may
contain juicy details such as usernames and passwords to

remote systems.

Tool:

https://github.com/sullo/nikto

/robots.txt

Checking for and opening the targets ‘/robots.txt’ file can show
you sensitive locations only meant for admins and developers,
such as debugger consoles, admin panels and different paths
and endpoints the target doesn’t want anyone going to or

knowing about, specifically web crawlers.

Source code analysis - Javascript

Analyse javascript source code files to uncover hidden
functionality, paths and endpoints, URLs, hardcoded secrets,

API calls, misconfigurations, application logic, developer

https://github.com/sullo/nikto

comments and possible vulnerabilities such as cross-site

scripting (XSS).

Tool:
https://github.com/xnl-h4ck3r/xnLinkFinder

Historical Data

Uncover historical data using waybackurls via the
waybackmachine to discover older API documentation to aid in

your recon.

Tool:

https://github.com/tomnomnom/waybackurls

Parameter Fuzzing

Use parameter fuzzing to discover new (undocumented)
parameters and test them for local file inclusion vulnerability
using ‘/etc/passwd/ proof of concept. Other parameter based
vulnerabilities can also be tested, such as sequel injection
(SQLi), server-side request forgery (SSRF), cross-site scripting
(XSS), etc.

Tool:
ffuf -u "http://10.38.1.110:3000/api/v1/book/FUZZ?=123" -w

/usr/share/wordlists/seclists/Discovery/Web-Content/burp-

parameter-names.txt

Uncovering old versions

Developers may leave (‘/v1’, ‘/v2’, ¢/3’, /4’) API versions
running on their infrastructure, allowing us to find older

vulnerabilities on a target still present.

HTTP request methods.

GET, PUT, POST, DELETE
(Mogzilla, n.d)

If the API expects a GET request to a specific endpoint,
however, you instead send a POST, PUT or DELETE request, it
may not expect to receive anything other than what it is
expecting. It may allow you to manipulate the API to perform

actions it otherwise wouldn't perform.

Table 42: API Methodology Hacking Tips and Tricks take away

Tool

Commands used Link

http://10.38.1.110:3000/api/v1/book/FUZZ?=123
https://github.com/tomnomnom/waybackurls
https://github.com/xnl-h4ck3r/xnLinkFinder

nmap nmap -sC -sV -A 10.38.1.110 https://github.com/nmap/nmap
nmap nmap -sV -p- 10.38.1.110 https://github.com/nmap/nmap
subfinder nmap -sV —script=graphql-introspection https://github.com/
10.38.1.110 projectdiscovery/subfinder
subfinder subfinder -d target.com | grep "api" https://github.com/
projectdiscovery/subfinder
sublist3r python3 sublist3r.py -d target.com https://github.com/aboul3la/
Sublist3r
amass amass enum -d target.com | grep api (Ball, https://github.com/owasp-amass/
2022) amass
whatweb whatweb -a 3 http://10.38.1.110:5013 https://morningstarsecurity.com/
research/whatweb
gobuster gobuster dns -d target.com -w https://github.com/OJ/gobuster
/usr/share/wordlists/amass/subdomains.Ist
gobuster gobuster dir -u http://10.38.1.110:8000/ -w https://github.com/OJ/gobuster

/usr/share/wordlists/Hacking-APIs/Wordlists/a
pi_superlist --exclude-length 1179

kiterunner (kr)

kr scan http://10.38.1.110:8000/ -w

/usr/share/wordlists/routes-large.kite

https://github.com/assetnote/

kiterunner

ffuf ffuf -u http://10.38.1.110/users/v1/FUZZ -w https://github.com/ffuf/ffuf
/usr/share/wordlists/seclists/Usernames/xato-
net-10-million-usernames.txt -mc 200

ffuf ffuf -u "http://10.38.1.110:3000/api/v1/book/? |https://github.com/ffuf/ffuf
FUZZ=123" -w
/usr/share/wordlists/seclists/Discovery/Web-
Content/burp-parameter-names.txt

ffuf ffuf -u "http://10.38.1.110:3000/api/v1/book/? |https://github.com/ffuf/ffuf

id=FUZZ" -w
/usr/share/wordlists/seclists/Fuzzing/LFI/LFI-

https://github.com/ffuf/ffuf
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
https://github.com/ffuf/ffuf
http://10.38.1.110:3000/api/v1/book/?FUZZ=123
http://10.38.1.110:3000/api/v1/book/?FUZZ=123
https://github.com/ffuf/ffuf
http://10.38.1.110/users/v1/FUZZ
https://github.com/assetnote/kiterunner
https://github.com/assetnote/kiterunner
http://10.38.1.110:8000/
https://github.com/OJ/gobuster
http://10.38.1.110:8000/
https://github.com/OJ/gobuster
https://morningstarsecurity.com/research/whatweb
https://morningstarsecurity.com/research/whatweb
http://10.38.1.110:5013/
https://github.com/owasp-amass/amass
https://github.com/owasp-amass/amass
https://github.com/aboul3la/Sublist3r
https://github.com/aboul3la/Sublist3r
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder
https://github.com/nmap/nmap
https://github.com/nmap/nmap

Jhaddix.txt

nuclei nuclei -u 10.38.1.110:3000 https://github.com/

projectdiscovery/nuclei

Table 43: Summary of commands used in the methodology

https://github.com/projectdiscovery/nuclei
https://github.com/projectdiscovery/nuclei

5. Chapter 5 - Testing

5.1 Introduction

Chapter 5 aims to evaluate the methodology's effectiveness developed in Chapter 4, how well it
works in practice, identify its strengths once practically applied in a penetration test and assess its

limitations and possible improvements.

5.2 Testing Environment Setup

The testing environment which we will use to practically implement the API penetration testers

methodology will be the VAmPI virtual machine (see Figure 66).

kall-apthacker [Running] - Orade YM VirtuslBos
Flle Machine view Input Dewces Hel

o I e 5) might el

Ubuntu-AFi-Server (VAmPI) [Runaing] - Oracle Vi VirtualBox
Flle Machine View input Devices Help

-
-

oot QUTESTE: fhome fheckesfunrvur/MAmpl (] =

ArFl% pythend spp.py

&
ol
©)
=
&
&

p
o |

Figure 66: VAmPI setup and running

5.3 Application of the API Penetration Testers Methodology

Here, we will apply the API penetration testers methodology by conducting a penetration test

against VAmPI. This will demonstrate and test the effectiveness of the developed methodology and

ensure its practical applicability. By implementing it, we showcase a methodology crafted for
penetration testers to conduct penetration tests specifically for APIs and validate its functionality.
Through this hands-on approach, we can identify weaknesses and opportunities for refinement to

further enhance the methodology in the future.

5.3.1 Information Gathering

The first stage of our test will be to perform information gathering. This stage aims to collect as
much information as possible to better understand what type, version and architecture the API is to
better prepare for the later stages. This involves API identification, reviewing available API

documentation and seeing how the API handles authentication.

5.3.1.1 API Identification

To identify the API, we will look at the API's structure, analyse the response data that the API sends

and identify how the API transfers data and in what format.

Request

Raw Hex =] o =

1 GET / HTTP/1.1

Host: 18.38.1.110:50020

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.@ (Windows NT 10.@; Wing4; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/113.8.5672.93 Safari/537.36

& Accept:

text/html,application/xhtml+xml, application/xml;q=0.9,image/avif, image/webp,image/apng,*/*;q=0.8,

application/signed-exchange;v=b3;q=0.7

Accept-Encoding: gzip, deflate

8 Accept-Language: en-US,en;q=0.9

9 Cookie: welcomebanner_status=dismiss: continueCode=
JM240Pav])8xpyrimkLgnV10wAdvCvjubjUJvGYSBEIKMoDE3XR1Z7geNbWzP; language=en

18 Connection: close

wWoR

Lo

Figure 67: Example request - VAmPI

Response
Pretty Raw Hex n =
HTTF/1.1 288 OK
Server: Werkzeug/2.2.3 Python/3.108.12
Date: Thu, B7 Sep 2023 14:50:46 GMT
Content-Type: application/json

Content-Length: 271
Connection: close

[

o B W

[

{
"message”:"VAmMPI the Vulnerable API",
"help"”:
"WAmMPI is a vulnerable on purpose API. It was created in order to evaluate the efficiency of th
ird party tools in identifying vulnerabilities in APIs but it can also be used in learning/teac
hing purposes."”,
"wulnerable":1

Figure 68: Example REST API response - VAmPI

From making a simple request and analysing response headers we can determine that the API that's
currently in use by the application server is a RESTful API (JSON). We can also see the endpoint
structure which is typical of RESTful APIs.

5.3.1.2 Documentation Review

In the case of VAmPI, the documentation can be found on its GitHub page; however, by putting the
API specification file into the Swagger editor, we can visualise the documentation properly. It is
important to note a light file brute-force identifies the location of the specification file on the server

(http://10.38.1.110:5000/0penapi.json).

http://10.38.1.110:5000/openapi.json

O R % SIS

litor. Filev Edity Inserty GenerateServer v Generate Client v About v Try our new Editor ~

AnPT

home ~
/ VAmMPI home v

books n
/books/V1 Retrieves all books 7
/books /vl Add new book v
/books/v1/{book_title} Retrieves book by title along with secret v

db-init PN
/createdb Creates and populates the database with dummy data v

users e
/users/vl Retrieves all users v
/users/vl/_debug Retrieves all details for all users N
Jusers/v1/login Login to VAmPI v
/users/vl/register Register new user ~
l /users/vl/{username} Deletes user by username (Only Admins) v
/Jusers/vl/{username} Retrieves user by username v
/users/vl/{username}/email Update users email v
Jusers/vl/{username}/password Update users password v

ok

Figure 69: Building VAmPI API Documentation (see Table 18)

From the documentation, we now have a better idea of how the API is supposed to work and what
HTTP methods it will accept at which endpoints. We can see various endpoints, parameters and

values. This can help us better understand the function and behaviour of the target API.

5.3.1.3 Authentication Analysis

VAmPI uses token-based authentication to register, login and authenticate as a user. After finding
and reading the API documentation, it is clear that we are going to have to make a post request
using content-type/json with the fields it requires in its error reporting. VAmPI requires email,

username and password fields and content type of JSON to register an account.

Request

d

Pretty Raw Hex

POST /users/vl/register HTTP/1.1

Host: 1©.38.1.11@:5000

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.@ (Windows NT 12.0; WinG4; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/113.0.5672.93 Safari/537.36

6 Accept:

- S

L

n

text/html, application/xhtml+xml, application/xml;gq=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,

application/signed-exchange;v=b3;q=0.7
7 Accept-Encoding: gzip, deflate
2 Accept-Language: en-US,en;q=0.9
9 Connection: close
1@ Content-Length: 92
11 Content-Type: application/json

12
13 {
14 "email":"Hackerman@example.com"”,
15 "username”: "Hackerman",
16 "password":"J78878"
17 '}
Figure 70: Registering an account - VAmPI
Response -

Pretty Raw Hex Render =

HTTP/1.1 20@ 0K

Server: Werkzeug/2.2.3 Pythons3.10.12
Date: Thu, 87 Sep 2823 14:47:47 GMT
Content-Type: application/json
Content-Length: 92

Connection: close

[, T U N

)

< |
-~

"message"”:"Successfully registered. Login to receive an auth token.",
"status":"success”

Figure 71: Account registered successfully - VAmPI

Request
Pretty = Raw Hex = N =

POST /fusers/wl/login HTTP/1.1

Host: 1©.38.1.110:5800

Cache-Control: max-age=0@

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.@ (Windows NT 18.8; Win64,; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/113.8.5672.93 Safari/537.36

6 Accept:
text/html,application/xhtml+xml, application/xml;q=0.9,image/avif, image/webp,image/apng,*/*;q=0.8,
application/signed-exchange;v=bh3;q=0.7

7 Accept-Encoding: gzip, deflate

2 Accept-Language: en-US,en;q=0.9

O Cookie: welcomebanner_status=dismiss: continueCode=
JM24QPav]8xpyrjmkLgnV10wAdvCvijubjUlvGYSBESKMoD63XR1Z7geNbWzP; language=en

1@ Connection: close

11 Content-Type: application/json

12 Content-Length: 90

LA s L R

13

14 {

15 "email" : "Hackerman@example.com",
16 "username” :"Hackerman",

17 “passwordr:”J?SSTS“

1 /1

Figure 72: Login Request - VAmPI

Response
Pretty Raw Hex Render = N =
HTTP/1.1 20@ 0K
Server: Werkzeug/2.2.3 Pythons3.10.12
Date: Thu, 87 Sep 2823 14:55:34 GMT
Content-Type: application/json

Content-Length: 229
Connection: close

L B R B S T I)

[=]

{
"auth_token":
"ey hbGci0iJIUzI1INIIsInRScCIGIkpXVCI9. eylleHALIOJE20TQwWOTgl0TQsImlhdCIEMTYSNDASODUZNCWic3Viljols
GFja2VybWFuln®.xC48F86NBDbksUDVhASGTyx93uB7KfgchnG8Irvakaon"”,
"message”:"Successfully logged in.",
"status":"success”

Figure 73: Login Successful - auth_token - VAmPI

5.3.2 Reconnaissance

Reconnaissance is a stage where we want to actively start probing the target infrastructure and
fingerprint running services for open ports, types of running services, banners, subdomains,

identification of technology stacks, analysing application behaviour and all endpoints.

5.3.2.1 Port Scanning

With port scanning, we seek to gain insights into the operations of the server and determine what
ports are open, how many ports are open, what the highest and lowest ports are and what services

are running on those ports.

L ¢ sudo ~sC -sV -A -p- 10.38.1.110
[sudo] password f
Starting Nmap 7.93 (t nmap.org)
¢ determine a S servers. Reverse DNS is disal
dns or sp
Nmap scan
Host is up (@
Mot shown: 65
PORT STATE
5008/tcp open upnp?

ent-Length
Connection: close
"message”: "VAmPI the Vulnerable API", “"help”: "VAmPI is a wvulnerable on purpose API. It was cr
ng/teaching purposes.”, "vulnerable”:1}

Figure 74: Running a basic enumeration scan with nmap

Nmap scanning options

1 |nmap -sV 10.38.1.110

2 |nmap --script=http-headers 10.38.1.110

3 |nmap --script=http-methods 10.38.1.110

4 |nmap -sC -sV -A -p- 10.38.1.110

Table 44: nmap scanning options

5.3.2.2 Technology Identification

We want to identify the web technology stack currently being used by the target to understand better
how the API was built and how the technology is currently being used. We also look to identify any
possible version numbers alongside web technology stacks which we could correlate with exploit
databases. However, we're just interested in knowing what this application is made of, as it's a

headless, server-based API with no front-end application.

Technology stack Technology

Documentation tools Swagger Ul

JavaScript frameworks Zone.js, Angular 15.2.9, React, AngularJS

Font scripts Font Awesome, Google Font API

Miscellaneous Module Federation 50% sure, Webpack 50%
sure

Programming languages TypeScript

CDN Cdnjs, Google Hosted Libraries, Cloudflare

JavaScript libraries JQuery 2.2.4, core-js 3.30.2, Moment.js

UI frameworks Bootstrap 4.5.3, Angular Material 1.1.0

Table 45: Wappalyzer Tech Stack - VAmPI

K] Country[RESERVED][1, HTTPServer[1, IP[10.38.1.110], Python[3.10.12], Werkzeug[2.2.3]
Figure 75: Whatweb - VAmPI

5.3.3 Content Discovery

Content discovery is a stage where we want to discover as many assets that are exposed to the
internet as possible. We can think of it as shooting in the dark, where we make a lot of requests

using brute-force tools and word lists, hoping to find assets that have been left exposed.

w fusr/share/wordlists/Hacking-APIs/Wordlists/api_superlist json,xml, yaml

b

Finished

Figure 76: Directory and File Brute-force using API word list and common file extension names

5.3.4 Endpoint Analysis

As we have already identified through the documentation, we have already found many possible
endpoints that are interesting to us. More specifically, the '/users/v1/' endpoint is of particular

interest as this allows us to see the user's information, such as their registered email address, which

can result in data harvesting and facilitate brute-force/password spray attacks as seen in the

Myanmar investment breach (Bofa, 2021).

We will save all the endpoints and usernames to a file and run a vulnerability scan over all of these

endpoints to identify possible vulnerabilities.

1 http://10. 110:5000/createdb

2 http://10. 110:5000/

3 http://10. 110:5000/users/vl

4 http://10. 110:5000/users/v1l/ debug

5 http://10. 110:5000 /users/vl/register
6 http://10. 110:5000/users/vl/login

7 http://10. 110:5000 /users/vlfadmin

8 http://10. 110:5000 /users/vlfadmin/email

9 http://10. 110:5000 /users/vl/admin/password
10 http://10. 110:5000/books fv1

11 http://10. 110:5000/books /vl

12 http://10. 110:5000/books /v1/bookTitle13

Figure 77: Endpoints to scan in automatic SQLi scanning via sqlmap to test for SQLi

vulnerabilities

5.3.5 Vulnerability Scanning

As part of our penetration test, we will perform automatic vulnerability scanning. The advantages
here are that vulnerability scanners can quickly check a host for various vulnerabilities and check
their validation before reporting a possible vulnerability. We note that sometimes false positives
(incorrectly identified vulnerabilities classified as vulnerable) occur. For this reason, if we find any

vulnerabilities through automated scanning, we must validate them during the exploitation phase.

Cu

Templ

api.json

Figure 78: Nuclei Vulnerability Scanning

5.3.6 API Analysis

After running a vulnerability scan, it’s obvious that there are now obvious low-hanging fruit

vulnerabilities that can be exploited (easily). At this stage, we will take what we found in our

endpoint analysis section, save all the API endpoints to a file and run them all through the sqlmap

vulnerability scanning tool as a quick way to discover a possible SQL injection vulnerability.

Here, we tested various endpoints and usernames with different payloads. We finally discovered

that using an apostrophe at the end of the /users/vl/admin’ made the API return an error, a typical

SQLi vulnerability indication. We can also use the below command to quickly scan all endpoints of

an API to test for SQLi:

Command

Description

sqlmap -m endpoints.txt --batch --
answer="redirect=N" (Enlacehacktivista, n.d)

(see Table 41)

This command takes the crawled endpoints you
previously found through web crawling, scans
the application testing for sequel injection
(SQLi) and ensures no user interaction is
required during the scan to ensure it scans all

endpoints.

Table 46: sqlmap command to scan an entire application and all its endpoints for SQLi

Request

Ln S TR N

00~ O

=)

10

Pretty Raw Hex n

GET /users/vl/admin®' HTTP/1.1

Host: 16.38.1.118:5000

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.8 (Windows NT 1@0.8; Wint4; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/113.@.5672.93 Safari/s37.36

Accept:

text/html, application/xhtml+xml, application/xml;q=0.9, 6 image/avif, image/webp, image/apng,*/*;q=0.8,

application/signed-exchange;v=b3;q0=0.7

Accept-Encoding: gzip, deflate

Accept-Language: en-US5,en;q=0.9

Cockie: welcomebanner_status=dismiss: continueCode=
IM24QPav]8xpyrimkLgnV10wA4vCvjubjUlvGYSBESKMoDE3XR1Z7geNbWzP; language=en
Connection: close

Figure 79: Identifying vulnerable SQLi endpoints testing with payload (‘)

Response
Pretty Raw Hex Render n =

HTTF/1.1 588® INTERNAL SERVER ERROR
Server: Werkzeug/2.2.3 Python/3.198.12
Date: Fri, @8 Sep 2023 15:28:49 GMT
Content-Type: text/html; charset=utf-8

oW N

5 Content-Length: 41835
6 Connection: close
7
g <ldoctype html>
9 <html lang=en=
18 <head=>
11 <titles
sglalchemy.exc.OperationalError: (sqlite3.OperationalError) unrecognized token: "'admin''"
12 [SQL: SELECT * FROM users WHERE username = 'admin’'']
13 (Background on this error at: https://sglalche.me/e/28/e3q8)
14 /1 Werkzeug Debugger
<ftitle>
15 <link rel="stylesheet"” href="7__debugger__=yes&cmd=resource&f=style.css">
16 <link rel="shortcut icon”
17 href="7__debugger__=yes&cmd=resource& f=console.png">
18 <script src="7__debugger__=yes&cmd=resource& f=debugger.js">
<fscript>
19 <script>
20 var CONSOLE_MODE = false,
21 EVALEX = true,
22 EVALEX_TRUSTED = false,
23 SECRET = "S4WmQZGqtRto9ELLScY1";
24 <fscript>
25 </head=>
26 <body style="background-color: #fff">
27 <div class="debugger"=
28 <h1l>
OperationalError
</hl=
29 <div class="detail">
38 <p class="errormsg">
sglalchemy.exc.OperationalError: (sglite3.OperationalError) unrecognized token:
B34 5#39 : admind#39 ; B#39 "
31 [SQL: SELECT * FROM users WHERE username = ':admind#39;8#39;]
32 (Background on this error at: https://sglalche.me/e/28/e3g8)
33 </p>
34 </div=
35 <h2 class="traceback"=>

Traceback
Figure 80: SQLi payload (‘) test response
5.3.7 Exploitation

To exploit the sequel injection vulnerability we identified previously, we will use the sqlmap tool, as

seen in Figure 81, to exploit the SQLi vulnerability for us automatically.

onsent is ille It is the end use responsibility to obey a

11 provided target URL without any GET para e.g. 'ht .5 1') and without iding any ra through option
do you want to try URI injections in the target URL itself? [Y/n/q]
[1 n qlite'

ite

1 resuming ba ql
[1 [INFO] testing comnection to the target URL
sqlmap resumed the foll n ion point(s) from stored

olean-
AND bool
AND TngH'="TngH

R(113,113,112,113,113) || CHAR(108, ,121,107,118,115, 74, 100 0 ,103,100,117 0,115,120,75,10

Figure 81: SQLi Exploitation

As shown in Figure 81, the API is vulnerable to SQLi attack, and we were able to successfully

exploit this vulnerability by listing the database tables.

Figure 82: Database tables enumerated - POC

,107,74,100,104,

6. Chapter 6 — Discussion and Conclusion

6.1 Introduction

Here, we focus on summarising and discussing each chapter to evaluate our overall research project
and assess future work, limitations and how the project overall contributed to the cyber security

industry and the API security field.

6.2 Research Context

The need for an API penetration testing methodology was because there did not exist a publicly
available methodology to teach inexperienced hackers how to hack APIs. There does exist a
hacking methodology that focuses only on web applications, developed by Jason Haddix
(NahamSec, 2020); however, this does not exist for APIs, and that was our primary motivation and
research gap to address. We wanted to learn more in-depth about how to hack APIs, document the
process and produce a deliverable that could be taken and used immediately or as the foundations to

further build upon helping others create their own methodologies.

6.3 Hypothesis Revisited

Our hypothesis, which we proved, states that implementing an effective API penetration testing
methodology will significantly enhance the security of APIs and reduce the risk of data breaches. It
is clear that with a structured and robust methodology for approaching a penetration test where you
know what each next step is going to be and your methodology includes all the current trends (The
Hacker News, 2023) and essential elements of API hacking, which ours does, we can significantly
reduce the attack surface and the opportunity for threat actors to exploit these vulnerabilities to
cause a data breach. Though we do not have data to prove this in the real world, by covering all the
main elements of penetration testing and ensuring they are applied in testing, we can be confident
that we will be able to identify vulnerabilities, validate existing security controls and provide

assurance to the client that their API is secure.

6.4 Recap of The Literature Review

The literature review seeks to find as much relevant literature that will aid in learning and
developing our implementation. From the literature, we learnt techniques, tooling, resources, and

commonly exploited attack vectors and ethical bug bounty reports, seeing how ethical hackers

discovered their findings (see Appendix G), alongside prioritising the most critical and commonly
found vulnerability, BOLA. We were able to not only identify research gaps but also critique the
literature sources by their thematic groups in order to address some of the key points noted in our
implementation, such as further understanding how to find and exploit BOLA and focus on ethical
testing where we state using accounts only owned and controlled by the tester and not use legitimate

customer accounts as that would violate data protection laws (see Table 15) and be unethical.

6.5 Research Methodology Overview

In order to prove our hypothesis, we need to develop a methodological approach to how we will
conduct initial research, implement the proposed research project and test our implementation to
ensure it works. The process we went through was to, through our literature review, identify
common themes, attack vectors and vulnerabilities specific to APIs, identify real-world blackhat
hacker playbooks, write-ups and methodology to understand better how threat actors go through the
process of vulnerability identification and exploitation, then compare that with how white hats
conduct their ethical testing and see what the differences were and how we can take both
approaches and implement that as part of our API hacking methodology. We also identify common
and specific API penetration testing tools, word lists, resources and virtual machines to conduct our
testing. We finish our methodology with ethical considerations, such as virtual machine usage and

testing, possible limitations, and ethical considerations to ensure compliance.

6.6 Research Implementation Overview

Chapter 4, Implementation, is the deliverable that we built to provide penetration testers who are
either new or well-experienced a methodology which they can use and take away to improve
security testing against APIs, both for REST and GraphQL. Our primary motivation behind the
methodologies development was so that we could help better train and create awareness for security
professionals and developers so that they can better test and develop APIs more securely, which will
have the positive side effect of reducing the amount of data breaches we are seeing (see Table 14)

directly from API exploitation.

6.7 Testing and Results Summary

6.7.1 Effectiveness

The effectiveness of the API methodology discovered through our testing shows that it works well
for someone experienced and inexperienced and provides insights, knowledge, tips and tricks
alongside tooling with command examples to go through the reconnaissance and vulnerability
identification process. The methodology is robust, covering all essential elements of a penetration
test specific to API technology and architectures and also shows how and why you would choose to
conduct each stage of testing, such as JavaScript code analysis to find developer comments, private
keys, tokens, directory and file paths, discovering hidden features, understanding the applications

underlying logic and other potentially sensitive information.

6.7.2 Limitations and Challenges

A limitation we discovered while using the API penetration testers methodology is the API analysis
section. Although it is good that the methodology has touched upon the BOLA vulnerability, which
is rated as number one on the OWASP API top ten in terms of severity, the methodology lacks the
inclusion of more OWASP API top ten vulnerabilities (OWASP, 2023). APIs will have more
vulnerabilities than just BOLA, and it would be good to cover at least the top three vulnerabilities
from the OWASP top ten. It has been challenging to know what other vulnerability types to look for
during testing as the methodology only covers BOLA.

6.7.3 Areas for Improvement

Improvements to the methodology would include sub-methodologies for each API technology that
the tester will be testing. This means having a sub-methodology for RESTful and GraphQL APIs
instead of trying to do both in one methodology, as this provides little focus on each API and thus
lacks vulnerability depth. Also, the inclusion of more OWASP API vulnerabilities would be

beneficial.

6.7.3.1 Expand testing

Integrating more vulnerable APIs and performing testing against those instead of just VAmPI would
allow for more thorough testing of the API methodology as it would be used to test against different

APIs and software stacks.

6.7.3.2 Modularise the Methodology

Modularising the methodology will better help testers know which stage of the methodology to use

for their specific use case during their penetration tests and almost allows the tester to build their

own methodology from the current one specific to their current needs and requirements.

6.7.3.3 Documentation & Note Taking

Finally, the methodology does not show a practical way to take all of the findings from your

penetration test and note them down, which can then be used to produce a penetration test report at

the end of the engagement to deliver your findings to the client.

6.8 Research Reflections

6.8.1 Objectives

As shown in Table 47, our main research objectives show what we were initially seeking to learn,

take away and achieve from this research project.

Main Objectives

Reason

Develop a robust and thorough API penetration

testing methodology.

To stunt the progression at which we see data
breaches occur because of API exploits, we need
to develop and provide testers and developers
with a methodology to test their APIs better and
learn common attack vectors favoured by threat
actors so that the tester can discover the same
vulnerabilities as the threat actor. This would
result in a more secure API security posture and
reduce the opportunity for attackers to cause a

data breach in the organisation.

Identify the most prevalent API-specific

vulnerabilities.

To ensure that we can effectively test and secure
APIs, we need to be aware of the most common
and critical vulnerabilities that APIs can be
exposed to so that we can look for them during

our testing and remediate them.

Identify the key tools to use in the methodology.

Similar to identifying the most critical

vulnerabilities to which APIs can be exposed,
we need to source the correct tools, services, and
resources to use during our testing to streamline
our tests specifically to APIs. This ensures we
discover API vulnerabilities and reduces the
chance of discovering false positive web
application vulnerabilities. Also, tools designed
for web applications may not work when used
on APIs because they differ in design and

architecture.

Research penetration testing tips and tricks

relevant to API hacking.

When reading through our sourced body of
literature (see Table 5), bug bounty reports (see
Appendix G) and methodologies (see Table 16,
we need to analyse and identify relevant tips and
tricks that can commonly work against most
APIs and are good areas to quickly cover to
ensure we find low hanging fruit vulnerabilities
before delving deeper into the test ensuring good

ground coverage throughout the penetration test.

Cover the walk-through of at least one

vulnerability and show its impact.

Broken Object Level Authorisation (BOLA) is
currently (2023) the most common and critical
API vulnerability (OWASP, 2023) that results in
the biggest impact when exploited. For this
reason, we will prioritise its demonstration in

our implementation.

Demonstrate how to set up the testing

environment.

To test our implementation and provide practical
demonstrations through the methodology for
clarity, we will set up a virtual testing lab, which
will use VirtualBox to isolate the machines and
the network. This also ensures ethical
compliance for the ethics committee (see
Appendix A). The machines that will be used
will be vulnerable API machines to perform

testing against, and we will test from a Kali

Linux machine, making it clear who the tester

and server are.

Ensure the methodology is reproducible and

actionable.

To ensure that the methodology can be
reproduced and to allow readers not to have to
read through the whole methodology each time
they want to refer back to something relevant to
their specific engagement, we produce a tool
and cheat sheet table with all the commands and
tools used during the methodology with tips and

tricks.

Understand why APIs are commonly being

targeted in attacks.

Attackers are looking for the path of least
resistance when looking to steal data. Threat
actors commonly look for the easiest way into
your networks to steal your data and then sell it
or publicly leak it for reputational points on
forums (Zoltan, 2022). APIs are increasingly
becoming the target of attacks because they have
direct access to data and backend services.
Commonly, organisations have poor visibility
into how many APIs they have, how many are in
use and how many are just sitting on their
infrastructure, deprecated and no longer in use

(zombie API).

Allow readers with varying skills and experience
to understand the concepts shown throughout the

methodology.

The methodology was designed to be useful for
experienced testers and as an educational
resource for those inexperienced wanting to

learn API hacking.

Table 47: Core research objectives

We proved our hypothesis and met our core research objectives. We feel confident to apply the

methodology as seen in Chapter 5 in real-world penetration testing engagements, providing clients

with the best possible testing service.

6.8.2 Findings

From our Chapter 5 testing, we found that the methodology covers all of the essential elements of
an API penetration testing engagement, covering aspects such as JavaScript file enumeration and
GraphQL inspection, information gathering, passive and active reconnaissance, content discovery,

automated vulnerability scanning and API analysis specific to REST and GraphQL APIs.

Our main findings are laid out in Table 48, which helped us identify areas for improvement. The
penetration test methodology worked well and helped us realise that not all aspects will apply to all
penetration testing engagement scenarios as the methodology is quite broad; however, it covers all

the essential elements expected from a standard API penetration test.

6.8.3 Contributions

Initially, as we decided whether we would choose API security as our research topic, we identified
in the cyber security field the general lack of focus, research and tooling made towards API security.
We knew about some initial researchers (see Table 8), their works (see Table 5) and some tooling.
However, we wanted to contribute to the API security field what is commonplace in the web
application security field by developing an API penetration testing methodology to effectively
conduct ethical security testing to discover and exploit vulnerabilities with a focus not on how to

exploit the identified vulnerability but where to look for vulnerabilities.

6.9 Recommendations for Future Work

To further improve the methodology and to build a more robust API penetration testing

methodology with a focus on functionality testing, we should consider the following:

Area of Improvement Future Work

Building an automation framework Building an automation framework: A bash
script that chains all the tools covered in the
methodology into a framework (see Appendix F)
that would automate information gathering,
passive and active reconnaissance, content
discovery, endpoint analysis, fuzzing and
vulnerability scanning specifically for API

penetration testing.

Incorporating more API-specific vulnerabilities |Incorporating more API-specific vulnerabilities

into the analysis subsection of the

implementation

in the API analysis subsection: The methodology
currently focuses on discovering and exploiting
BOLA as part of the API analysis subsection. To
further improve the methodology and to provide
more coverage for penetration testers, the
inclusion of Broken User Authentication,
Excessive Data Exposure, Lack of Rate
Limiting, Broken Authorisation, Injection,
Security Misconfigurations and Mass
Assignment (OWASP, 2023) would enhance the
methodology allowing for testers to know how
and what to look for covering and discovering

more vulnerability types.

Research on vulnerability weaponization

Research how vulnerabilities could be
weaponised on mass to exploit and exfiltrate
user data and then implement safeguards and
detection mechanisms to prevent and detect
malicious activity, as Alissa Knight's white
paper (Knight, 2021) shows that organisations
don’t have clear visibility into their API

infrastructure.

Table 48: Work for future improvements

6.10 Dissertation Research Project Conclusion

We conducted our initial research by sourcing relevant literature and organising them by their

thematic groups. We then analysed the literature and sought to identify key information, such as

information gathering, reconnaissance, content discovery, vulnerability scanning and API

application analysis, to implement the key findings into our implementation to make the API

penetration testing methodology more robust. We then laid out our research methodology, in which

we go through how we will perform our implementation and the tools and services we will use.

Then, we consider ethical issues and possible limitations. We then fully developed our

implementation, which we believe is very strong, backed by our testing and analyses of the results

and robust methodology that incorporates all the essential elements of an API-specific penetration

test and showcases the differences in technique and tooling from hacking web applications, which

was a core objective in order to show security testers the difference. We then performed testing to

asses the implementation's effectiveness.

References

Avertium. (2022). APT Attacks & Best Practices. https://explore.avertium.com/resource/api-attacks-

and-best-practices

Afri TechNet, (2016). Phineas Fisher Hacks Catalan Police Union Website (Pt. 2).
https://youtu.be/kCLDgvDnGzA

Arthur, C. (2013). LulzSec: what they did, who they were and how they were caught.
https://www.theguardian.com/technology/2013/may/16/lulzsec-hacking-fbi-jail

APIsec University, (2022). Addressing API Security Risks and Preventing Data Breaches.
https://youtu.be/u JRRvavskY

Abrams, L. (2023). 200 million Twitter users' email addresses allegedly leaked online.

https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-
allegedly-leaked-online

Abrams, L. (2021). Angry Conti ransomware affiliate leaks gang's attack playbook.

https://www.bleepingcomputer.com/news/security/angry-conti-ransomware-affiliate-leaks-gangs-
attack-playbook

Apisecurity, (n.d). OWASP API Security Top 10. [PDF].

https://apisecurity.io/encyclopedia/content/owasp-api-security-top-10-cheat-sheet-a4.pdf

Assetnote. (n.d). Contextual Content Discovery Tool . https://github.com/assetnote/Kiterunner

Assetnote. (n.d). Assetnote Wordlists. https://wordlists.assetnote.io

Aboul3la. (n.d). Fast subdomains enumeration tool for penetration testers.

https://github.com/aboul3la/Sublist3r

Auth0. (n.d). JWT.IO allows you to decode, verify and generate JWT. https://jwt.io

AdmiralGaust. (n.d). Bash script to automate Bug Bounty Reconnaissance.

https://github.com/AdmiralGaust/bountyRecon

BuiltWith. (n.d). Find out what websites are Built With. https://builtwith.com

Bicchierai, L. (2016). The Vigilante Who Hacked Hacking Team Explains How He Did It.

https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-

did-it

https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://builtwith.com/
https://github.com/AdmiralGaust/bountyRecon
https://jwt.io/
https://github.com/aboul3la/Sublist3r
https://wordlists.assetnote.io/
https://github.com/assetnote/Kiterunner
https://apisecurity.io/encyclopedia/content/owasp-api-security-top-10-cheat-sheet-a4.pdf
https://www.bleepingcomputer.com/news/security/angry-conti-ransomware-affiliate-leaks-gangs-attack-playbook
https://www.bleepingcomputer.com/news/security/angry-conti-ransomware-affiliate-leaks-gangs-attack-playbook
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online
https://youtu.be/u_JRRvavskY
https://www.theguardian.com/technology/2013/may/16/lulzsec-hacking-fbi-jail
https://youtu.be/kCLDqvDnGzA
https://explore.avertium.com/resource/api-attacks-and-best-practices
https://explore.avertium.com/resource/api-attacks-and-best-practices

Bhatnagar, G. (2018). Pentesting Rest APT's. https://www.slideshare.net/OWASPdelhi/pentesting-

rest-apis-by-gaurang-bhatnagar

Bicchierai, L. (2016). https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-

team-explains-how-he-did-it
Blue, V. (2014). Top gov't spyware company hacked; Gamma's FinFisher leaked.
https://www.zdnet.com/article/top-govt-spyware-company-hacked-gammas-finfisher-leaked

Bassterlord. (n.d). BasterLord - Network manual v2.0.
https://web.archive.org/web/20230531144434if /https://cdn-151.anonfiles.com/

vcD868ubz5/08a9b897-1685544763/BasterL.ord+-+Network+manual+v2.0.pdf

Ball, C. (2022). Hacking APIs: Breaking Web Application Programming Interfaces. [Book]

Bombal, D. (2022). Hacking APIs and Cars: You need to learn this in 2023!
https://youtu.be/4VaHN4CG34w

Bugcrowd, (2022). LevelUpX - Series 3: How I hacked 55 Banks & Cryptocurrency Exchanges
with Alissa Knighta. https://youtu.be/6yB33FihwtE

Bombal, D. (2022). Free API Hacking course! https://youtu.be/CkVvB5woQRM

Bombal, D. (2023). Real World Hacking Tools Tutorial (Target: Tesla). https://youtu.be/-
jLbRnmGYaA?si=0ZrNJNKZvHwJ2zon

Bicchierai, L. (2017). T-Mobile Website Allowed Hackers to Access Your Account Data With Just

Your Phone Number. https://www.vice.com/en/article/wjx3e4/t-mobile-website-allowed-hackers-to-

access-your-account-data-with-just-your-phone-number

Bombal, D. (2023). How this hacker Hacked NASA in 60 seconds (Real World Tutorial).
https://youtu.be/ZpdgqgsviAiA?si=ozmU27aBaHXisD8Y

Barr, J. et al. (2023). Hacktivism in Latin America:The Case of Guacamaya.
https://staticl.squarespace.com/static/63ecbb167597522082d99465/t/
643d4ac792335924426fced5/1681738440405/

Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf

Bofa, S. (2021). Full Disclosure: DICA IMS Privilege Escalation Exploit (CVE-D33Z-NUTZ).

https://bofa.substack.com/p/full-disclosure-dica-ims-privilege

Capt-meelo. (n.d). An automated approach to performing recon for bug bounty hunting and

penetration testing. https://github.com/capt-meelo/L.azyRecon

https://github.com/capt-meelo/LazyRecon
https://bofa.substack.com/p/full-disclosure-dica-ims-privilege
https://static1.squarespace.com/static/63ecbb167597522082d99465/t/643d4ac792335924426fced5/1681738440405/Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf
https://static1.squarespace.com/static/63ecbb167597522082d99465/t/643d4ac792335924426fced5/1681738440405/Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf
https://static1.squarespace.com/static/63ecbb167597522082d99465/t/643d4ac792335924426fced5/1681738440405/Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf
https://youtu.be/ZpdgqsviAiA?si=ozmU2ZaBaHXisD8Y
https://www.vice.com/en/article/wjx3e4/t-mobile-website-allowed-hackers-to-access-your-account-data-with-just-your-phone-number
https://www.vice.com/en/article/wjx3e4/t-mobile-website-allowed-hackers-to-access-your-account-data-with-just-your-phone-number
https://youtu.be/-jLbRnmGYaA?si=OZrNJNKZvHwJ2zon
https://youtu.be/-jLbRnmGYaA?si=OZrNJNKZvHwJ2zon
https://youtu.be/CkVvB5woQRM
https://youtu.be/6yB33FihwtE
https://youtu.be/4VaHN4CG34w
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://www.zdnet.com/article/top-govt-spyware-company-hacked-gammas-finfisher-leaked
https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://www.slideshare.net/OWASPdelhi/pentesting-rest-apis-by-gaurang-bhatnagar
https://www.slideshare.net/OWASPdelhi/pentesting-rest-apis-by-gaurang-bhatnagar

Chrislockard. (n.d). A wordlist of API names for web application assessments.

https://github.com/chrislockard/api wordlist

Crtsh. (n.d). Certificate Search Engine. https://crt.sh/?q=

Censys. (n.d). Search Engine. https://search.censys.io

Canonical. (n.d). Ubuntu downloads - Ubuntu Desktop. https://ubuntu.com/download

Cox, J. (2016). A Notorious Hacker Just Released a How-To Video Targeting Police.

https://www.vice.com/en/article/vv77v9/phineas-fisher-sme

Cyble. (2021). Conti Secrets Hacker’s Handbook Leaked. https://cyble.com/blog/conti-secrets-
hackers-handbook-leaked

Cox, et al. (2017). Tm Going to Burn Them to the Ground': Hackers Explain Why They Hit the

Stalkerware Market. https://www.vice.com/en/article/vvabv3/hackers-why-they-hit-stalkerware-

flexispy-retina-x

Cox, J. (2019). Offshore Bank Targeted By Phineas Fisher Confirms it Was Hacked.

https://www.vice.com/en/article/ne8p9b/offshore-bank-targeted-phineas-fisher-confirms-hack-

cayman-national-bank

CryO0l1t3, (n.d). Penetration Testing Process.
https://academy.hackthebox.com/course/preview/penetration-testing-process

CISA. (2023). 2022 Top Routinely Exploited Vulnerabilities.

https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a

Cameron, D. (2014). How an FBI informant orchestrated the Stratfor hack.
https://www.dailydot.com/debug/hammond-sabu-fbi-stratfor-hack

Cameron, D. (2012). Stratfor Computer Forensic Investigation.
https://www.scribd.com/document/229261982/Stratfor-Computer-Forensic-Investigation
Cloudflare. (2021). A Guide to API Security.

https://www.cloudflare.com/static/62af8fcd051f631df12ac980730fde8a/
API Shield white paper.pdf

Cloudflare. (n.d). What is defense in depth? | Layered security.
https://www.cloudflare.com/en-gb/learning/security/glossary/what-is-defense-in-depth

Cubrilovic, N. (2009). RockYou Hack: From Bad To Worse.

https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords

https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords
https://www.cloudflare.com/en-gb/learning/security/glossary/what-is-defense-in-depth
https://www.cloudflare.com/static/62af8fcd051f631df12ac980730fde8a/API_Shield_white_paper.pdf
https://www.cloudflare.com/static/62af8fcd051f631df12ac980730fde8a/API_Shield_white_paper.pdf
https://www.scribd.com/document/229261982/Stratfor-Computer-Forensic-Investigation
https://www.dailydot.com/debug/hammond-sabu-fbi-stratfor-hack
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a
https://academy.hackthebox.com/course/preview/penetration-testing-process
https://www.vice.com/en/article/ne8p9b/offshore-bank-targeted-phineas-fisher-confirms-hack-cayman-national-bank
https://www.vice.com/en/article/ne8p9b/offshore-bank-targeted-phineas-fisher-confirms-hack-cayman-national-bank
https://www.vice.com/en/article/vvabv3/hackers-why-they-hit-stalkerware-flexispy-retina-x
https://www.vice.com/en/article/vvabv3/hackers-why-they-hit-stalkerware-flexispy-retina-x
https://cyble.com/blog/conti-secrets-hackers-handbook-leaked
https://cyble.com/blog/conti-secrets-hackers-handbook-leaked
https://www.vice.com/en/article/vv77y9/phineas-fisher-sme
https://ubuntu.com/download
https://search.censys.io/
https://crt.sh/?q
https://github.com/chrislockard/api_wordlist

Coinbase, (2022). Retrospective: Recent Coinbase Bug Bounty Award.

https://www.coinbase.com/blog/retrospective-recent-coinbase-bug-bounty-award

Dolevf. (n.d). NSE Script for GraphQL Introspection Check. https://github.com/dolevf/nmap-

graphqgl-introspection-nse

Dolevf. (n.d). Damn Vulnerable GraphQL Application is an intentionally vulnerable implementation

of Facebook's GraphQL technology, to learn and practice GraphQL Security.
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application

DevSlop. (n.d). The Pixi module is a MEAN Stack web app with wildly insecure APIs!
https://github.com/DevSlop/Pixi

Danielmiessler. (n.d). SecLists is the security tester's companion. It's a collection of multiple types
of lists used during security assessments, collected in one place. List types include usernames,

passwords, URLSs, sensitive data patterns, fuzzing payloads, web shells, and many more.

https://github.com/danielmiessler/SecLists

DuckDuckGo. (n.d). Search Engine. https://duckduckgo.com

Dolevf. (n.d). graphw00f is GraphQL Server Engine Fingerprinting utility for software security
professionals looking to learn more about what technology is behind a given GraphQL endpoint.

https://github.com/dolev{/graphwQ0f

Dwisiswant0. (n.d). St8out - Extra one-liner for reconnaissance.

https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd

DiMaggio, J. (n.d). Ransomware Diaries: Volume 2 — A Ransomware Hacker Origin Story.

https://analyst1.com/ransomware-diaries-volume-2

EnlaceHacktivista, (n.d). Flexidie LeopardBoy and the Deceptions.
https://enlacehacktivista.org/images/8/8f/Flexispy.txt

EnlaceHacktivista, (n.d). Hack Back! A DIY Guide. https://enlacehacktivista.org/index.php?
title=Hack Back! A DIY Guide

EnlaceHacktivista. (n,d). SQL Injection — sqglmap command example.

https://enlacehacktivista.org/index.php?title=Common_Service Attacks#Injection

EnlaceHacktivista, (n.d). Liberty Counsel Breach. https://enlacehacktivista.org/libertycounsel.txt

EnlaceHacktivista, (n.d). Hacker History. https://enlacehacktivista.org/index.php?

title=Hacker History

https://enlacehacktivista.org/index.php?title=Hacker_History
https://enlacehacktivista.org/index.php?title=Hacker_History
https://enlacehacktivista.org/libertycounsel.txt
https://enlacehacktivista.org/index.php?title=Common_Service_Attacks#Injection
https://enlacehacktivista.org/index.php?title=Hack_Back!_A_DIY_Guide
https://enlacehacktivista.org/index.php?title=Hack_Back!_A_DIY_Guide
https://enlacehacktivista.org/images/8/8f/Flexispy.txt
https://analyst1.com/ransomware-diaries-volume-2
https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd
https://github.com/dolevf/graphw00f
https://duckduckgo.com/
https://github.com/danielmiessler/SecLists
https://github.com/DevSlop/Pixi
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/dolevf/nmap-graphql-introspection-nse
https://github.com/dolevf/nmap-graphql-introspection-nse
https://www.coinbase.com/blog/retrospective-recent-coinbase-bug-bounty-award

Enlacehacktivista, (2022). Hack Back! A DIY Guide to Digital Monkeywrenching.
https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T

Epi052. (n.d). An automated target reconnaissance pipeline. https://github.com/epi052/recon-

pipeline
E26174222. (2021). Missing authentication in buddy group API of LINE TIMELINE.
https://hackerone.com/reports/1283938

Epi052. (n.d). A fast, simple, recursive content discovery tool written in Rust.

https://github.com/epi052/feroxbuster

Erev0s. (n.d). Vulnerable REST API with OWASP top 10 vulnerabilities for security testing.
https://github.com/erev0s/VAmPI

Forbiddenstories. (n,d). https://forbiddenstories.org/case/mining-secrets

Freeman, E. (2020). API Security for dummies.
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJ9kIN

Ffuf. (n.d). Fast web fuzzer written in Go. https://github.com/ffuf/ffuf

Findomain. (n.d). The fastest and complete solution for domain recognition. Supports

screenshoting, port scan, HTTP check, data import from other tools, subdomain monitoring, alerts

via Discord, Slack and Telegram, multiple API Keys for sources and much more.

https://github.com/Findomain/Findomain

Farhi, D. et al. (2023). Black Hat GraphQL: Attacking Next Generation APIs. [Book]

Futuriom. (2023). API and Shift Left Security (With RSA Conference Wrap).
https://ia902609.us.archive.org/10/items/2023-shift-left-and-api-security-v-1.5-final/2023-Shift-

Left-and-API-Security-v1.5-final.pdf

Gatlan, S. (2023). T-Mobile hacked to steal data of 37 million accounts in API data breach.

https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-

accounts-in-api-data-breach

Google. (n.d). Search Engine. https://www.google.com

GitHub. (n.d). Version Control Search. https://github.com/search

Gwen001. (n.d). Find subdomains on GitHub. https://github.com/gwen001/github-subdomains

Gwen001. (n.d). Find endpoints on GitHub. https://github.com/gwen001/github-endpoints

https://github.com/gwen001/github-endpoints
https://github.com/gwen001/github-subdomains
https://github.com/search
https://www.google.com/
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach
https://ia902609.us.archive.org/10/items/2023-shift-left-and-api-security-v-1.5-final/2023-Shift-Left-and-API-Security-v1.5-final.pdf
https://ia902609.us.archive.org/10/items/2023-shift-left-and-api-security-v-1.5-final/2023-Shift-Left-and-API-Security-v1.5-final.pdf
https://github.com/Findomain/Findomain
https://github.com/ffuf/ffuf
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJ9kN
https://forbiddenstories.org/case/mining-secrets
https://github.com/erev0s/VAmPI
https://github.com/epi052/feroxbuster
https://hackerone.com/reports/1283938
https://github.com/epi052/recon-pipeline
https://github.com/epi052/recon-pipeline
https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T

Gwen001. (n.d). Basically a regexp over a GitHub search. https://github.com/gwen001/github-

regexp

Gallagher, S. (2017). T-Mobile customer data plundered thanks to bad API.

https://arstechnica.com/information-technology/2017/10/t-mobile-website-bug-apparently-
exploited-to-mine-sensitive-account-data

Goodin, D. (2021). Data leak makes Peloton’s Horrible, No-Good, Really Bad Day even worse.

https://arstechnica.com/gadgets/2021/05/peloton-takes-3-months-to-fix-flaw-that-exposed-users-

private-information

GOV UK, (2022). Cyber Security Breaches Survey 2022.

https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-

breaches-survey-2022

GOV UK. (n.d). Non-disclosure agreements. https://www.gov.uk/government/publications/non-

disclosure-agreements

Gallagher, B. (2013). Hacker Scrapes Thousands Of Public Phone Numbers Using Facebook Graph
Search. https://techcrunch.com/2013/06/24/hacker-scrapes-thousands-of-public-phone-numbers-

using-facebook-graph-search

HackerOne. (2022). The Bug Hunter's Methodology - Application Analysis | Jason Haddix.
https://youtu.be/FgnSAa2KmBI

Hensis. (2021). No brute force protection on web-api-cloud.acronis.com.

https://hackerone.com/reports/972045

Healdb. (2021). API on campus-vtc.com allows access to ~100 Uber users full names, email

addresses and telephone numbers. https://hackerone.com/reports/580268

hAPI-hacker. (n.d). Web API specific word lists. https://github.com/hAPI-hacker/Hacking-APIs

HackerTarget. (n.d). dns recon & research, find & lookup dns records. https://dnsdumpster.com

Inhibitor181. (2022). [h1-2102] shopApps query from the graphql at /users/api returns all existing

created apps, including private ones. https://hackerone.com/reports/1085332

Isbitski, M. (2021). Recap: The 7 Biggest API Security Incidents in 2021.

https://salt.security/blog/recap-7-biggest-api-security-incidents-in-2021

Isbitski, M. (2023). Salt Security Special Edition. API Security for dummies.

https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-eBook-

APISecurityforDummies.pdf

https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-eBook-APISecurityforDummies.pdf
https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-eBook-APISecurityforDummies.pdf
https://salt.security/blog/recap-7-biggest-api-security-incidents-in-2021
https://hackerone.com/reports/1085332
https://dnsdumpster.com/
https://github.com/hAPI-hacker/Hacking-APIs
https://hackerone.com/reports/580268
https://hackerone.com/reports/972045
https://youtu.be/FqnSAa2KmBI
https://techcrunch.com/2013/06/24/hacker-scrapes-thousands-of-public-phone-numbers-using-facebook-graph-search
https://techcrunch.com/2013/06/24/hacker-scrapes-thousands-of-public-phone-numbers-using-facebook-graph-search
https://www.gov.uk/government/publications/non-disclosure-agreements
https://www.gov.uk/government/publications/non-disclosure-agreements
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://arstechnica.com/gadgets/2021/05/peloton-takes-3-months-to-fix-flaw-that-exposed-users-private-information
https://arstechnica.com/gadgets/2021/05/peloton-takes-3-months-to-fix-flaw-that-exposed-users-private-information
https://arstechnica.com/information-technology/2017/10/t-mobile-website-bug-apparently-exploited-to-mine-sensitive-account-data
https://arstechnica.com/information-technology/2017/10/t-mobile-website-bug-apparently-exploited-to-mine-sensitive-account-data
https://github.com/gwen001/github-regexp
https://github.com/gwen001/github-regexp

ICO. (2020). ICO fines British Airways £20m for data breach affecting more than 400,000
customers. https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-

events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-

400-000-customers

Inspector General, (2018). Office of Inspector General | United States Postal Service Audit Report
Informed Visibility Vulnerability Assessment.
https://web.archive.org/web/20190412233722/https://uspsoig.gov/sites/default/files/document-
library-files/2018/IT-AR-19-001.pdf

Irwin, L. (2023). Demystifying the CIA Triad: Why It’s Crucial for Cyber Security.

https://itgovernance.co.uk/blog/what-is-the-cia-triad-and-why-is-it-important

IBM Security X-Force Threat Intelligence, (2021). 2021 IBM Security X-Force Cloud Threat
Landscape Report. https://www.ibm.com/downloads/cassWMDZOWKG6

ISO. (2022). ISO/IEC 27001 Information security management systems.
https://www.iso.org/standard/27001

ICO, (n.d). Understanding and assessing risk in personal data breaches. https://ico.org.uk/for-
organisations/sme-web-hub/understanding-and-assessing-risk-in-personal-data-breaches

InsiderPhD. (2020). Finding Your First Bug: Finding Bugs Using APIs.

https://www.youtube.com/watch?

v=yCUQBc2rY9Y &list=PLbyncTkpno5HgX1h2MnV6Qt4wvTb8Mpol

Ilascu, I. (2021). Translated Conti ransomware playbook gives insight into attacks.

https://www.bleepingcomputer.com/news/security/translated-conti-ransomware-playbook-gives-

insight-into-attacks

Jhaddix. (n,d). The Bug Hunters Methodology. https://github.com/jhaddix/tbhm

Jaeles-project. (n.d). The Swiss Army knife for automated Web Application Testing.

https://github.com/jaeles-project/jaeles

Jon_bottarini. (2018). [NR Infrastructure] Bypass of #200576 through GraphQL query abuse -

allows restricted user access to root account license key. https://hackerone.com/reports/276174

Juice-Shop. (n.d). OWASP Juice Shop: Probably the most modern and sophisticated insecure web

application. https://github.com/juice-shop/juice-shop

Kothari, A. (2020). Introducing the GraphQL Add-on for ZAP. https://www.zaproxy.org/blog/2020-

08-28-introducing-the-graphqgl-add-on-for-zap

https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://github.com/juice-shop/juice-shop
https://hackerone.com/reports/276174
https://github.com/jaeles-project/jaeles
https://github.com/jhaddix/tbhm
https://www.bleepingcomputer.com/news/security/translated-conti-ransomware-playbook-gives-insight-into-attacks
https://www.bleepingcomputer.com/news/security/translated-conti-ransomware-playbook-gives-insight-into-attacks
https://www.youtube.com/watch?v=yCUQBc2rY9Y&list=PLbyncTkpno5HqX1h2MnV6Qt4wvTb8Mpol
https://www.youtube.com/watch?v=yCUQBc2rY9Y&list=PLbyncTkpno5HqX1h2MnV6Qt4wvTb8Mpol
https://ico.org.uk/for-organisations/sme-web-hub/understanding-and-assessing-risk-in-personal-data-breaches
https://ico.org.uk/for-organisations/sme-web-hub/understanding-and-assessing-risk-in-personal-data-breaches
https://www.iso.org/standard/27001
https://www.ibm.com/downloads/cas/WMDZOWK6
https://itgovernance.co.uk/blog/what-is-the-cia-triad-and-why-is-it-important
https://web.archive.org/web/20190412233722/https://uspsoig.gov/sites/default/files/document-library-files/2018/IT-AR-19-001.pdf
https://web.archive.org/web/20190412233722/https://uspsoig.gov/sites/default/files/document-library-files/2018/IT-AR-19-001.pdf
https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers
https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers
https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers

Krebs, (2018). USPS Site Exposed Data on 60 Million Users.

https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users

Kumar, M. (2011). LulzSec Leak Sony's Japanese websites Database !

https://thehackernews.com/2011/05/lulzsec-leak-sonys-japanese-websites.html

Keary, T. (2023). 50% of orgs report experiencing data breaches due to exposed API secrets.

https://venturebeat.com/security/data-breaches-api

Knight, A. (2021). SCORCHED EARTH: HACKING BANKS AND CRYPTOCURRENCY
EXCHANGES THROUGH THEIR APIS. https://ia601402.us.archive.org/6/items/scorched-earth-

whitepaper/Scorched-Earth-Whitepaper.pdf

Knight, A. (2020). Memoirs of an API Hacker: Intercepting Encrypted Mobile Traffic to Hack a

Bank's API Server. https://www.alissaknight.com/post/memoirs-of-an-api-hacker-intercepting-

encrypted-mobile-traffic-to-hack-a-bank-s-api-server

Kumar, M. (2019). Over 100 Million JustDial Users' Personal Data Found Exposed On the Internet.
https://thehackernews.com/2019/04/justdial-hacked-data-breach.html

Keary, T. (2023). T-Mobile data breach shows API security can’t be ignored.

https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored

Keary, T. (2022). Twitter API security breach exposes 5.4 million users’ data.
https://venturebeat.com/security/twitter-breach-api-attack

Li, V. (2021). Bug Bounty Bootcamp: The Guide to Finding and Reporting Web Vulnerabilities.
[Book]

Lockheed Martin. (n.d). Lockheed Martin, the Cyber Kill Chain.
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

Lakshmanan, R. (2023). Millions of Vehicles at Risk: API Vulnerabilities Uncovered in 16 Major
Car Brands. https://thehackernews.com/2023/01/millions-of-vehicles-at-risk-api.html

Legislation. (n.d). Computer Misuse Act 1990.

https://www.legislation.gov.uk/ukpga/1990/18/contents

Legislation. (n.d). Data Protection Act 2018.

https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted

Legislation. (n.d). The Network and Information Systems Regulations 2018.
https://www.legislation.gov.uk/uksi/2018/506

https://www.legislation.gov.uk/uksi/2018/506
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://www.legislation.gov.uk/ukpga/1990/18/contents
https://thehackernews.com/2023/01/millions-of-vehicles-at-risk-api.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://venturebeat.com/security/twitter-breach-api-attack
https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored
https://thehackernews.com/2019/04/justdial-hacked-data-breach.html
https://www.alissaknight.com/post/memoirs-of-an-api-hacker-intercepting-encrypted-mobile-traffic-to-hack-a-bank-s-api-server
https://www.alissaknight.com/post/memoirs-of-an-api-hacker-intercepting-encrypted-mobile-traffic-to-hack-a-bank-s-api-server
https://ia601402.us.archive.org/6/items/scorched-earth-whitepaper/Scorched-Earth-Whitepaper.pdf
https://ia601402.us.archive.org/6/items/scorched-earth-whitepaper/Scorched-Earth-Whitepaper.pdf
https://venturebeat.com/security/data-breaches-api
https://thehackernews.com/2011/05/lulzsec-leak-sonys-japanese-websites.html
https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users

Legislation. (n.d). The Privacy and Electronic Communications (EC Directive) Regulations 2003.

https://www.legislation.gov.uk/uksi/2003/2426/contents/made

Microsoft Bing. (n.d). Search Engine. https://www.bing.com

Mozilla. (n.d). Firefox Browser Developer Edition.

https://www.mozilla.org/en-GB/firefox/developer

Mozilla. (n.d). HTTP request methods.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Mathur, A. (2020). API Discovery and Profiling -- Visibility to Protection.
https://www.akamai.com/blog/security/api-discovery-and-profiling-visibility-to-protection

Moim, (2017). T-Mobile Info Disclosure Exploit. https://youtu.be/3 gd3a077RU

Madden, N. (2020). API Security in Action. https://www.manning.com/books/api-security-in-action

Nmap. (n.d). Network Mapper. https://nmap.org

Nikitastupin. (n.d). Obtain GraphQL API schema even if the introspection is disabled.

https://github.com/nikitastupin/clairvoyance

NahamSec. (2023). Bug Bounty Recon Basics: The Complete Course (Part 1).

https://www.voutube.com/live/krCsMZfbuB4?feature=share

Ngalog. (2019). Private System Note Disclosure using GraphQL.

https://hackerone.com/reports/633001

Ndrong. (2021). Bumble API exposes read status of chat messages.
https://hackerone.com/reports/1080437

Noname. (2023). The API Security Disconnect Research from Noname Security on API Security

Trends in 2023. https://nonamesecurity.com/wp-content/uploads/2023/09/api-security-disconnect-
research-report-2023.pdf

NahamSec. (2022). Alissa Knight Talks About API Hacking, Car Hacking, Creating Content for
Hackers and More! https://youtu.be/Y2Y4SkOPswU

NahamSec. (2020). The Bug Hunter's Methodology v4.0 - Recon Edition by @jhaddix
#NahamCon2020! https://youtu.be/p4Jglulmcel

Novikov, I. (2022). How To Address Growing API Security Vulnerabilities In 2022.

https://www.forbes.com/sites/forbestechcouncil/2022/07/25/how-to-address-growing-api-security-

vulnerabilities-in-2022

https://www.forbes.com/sites/forbestechcouncil/2022/07/25/how-to-address-growing-api-security-vulnerabilities-in-2022
https://www.forbes.com/sites/forbestechcouncil/2022/07/25/how-to-address-growing-api-security-vulnerabilities-in-2022
https://youtu.be/p4JgIu1mceI
https://youtu.be/Y2Y4Sk0PswU
https://nonamesecurity.com/wp-content/uploads/2023/09/api-security-disconnect-research-report-2023.pdf
https://nonamesecurity.com/wp-content/uploads/2023/09/api-security-disconnect-research-report-2023.pdf
https://hackerone.com/reports/1080437
https://hackerone.com/reports/633001
https://www.youtube.com/live/krCsMZfbuB4?feature=share
https://github.com/nikitastupin/clairvoyance
https://nmap.org/
https://www.manning.com/books/api-security-in-action
https://youtu.be/3_gd3a077RU
https://www.akamai.com/blog/security/api-discovery-and-profiling-visibility-to-protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.mozilla.org/en-GB/firefox/developer
https://www.bing.com/
https://www.legislation.gov.uk/uksi/2003/2426/contents/made

Newman, L. (2018). How Hackers Slipped by British Airways' Defenses.
https://www.wired.com/story/british-airways-hack-details

OWASP. (n.d). In-depth attack surface mapping and asset discovery. https://github.com/owasp-

amass/amass
Offhourscoding. (n.d). Bug Bounty Recon Script. https://github.com/offhourscoding/recon

Organdonor. (2020). Access to information about any video and its owner via GraphQL endpoint

[dictor.mail.ru]. https://hackerone.com/reports/924914

OWASP. (n.d). Completely ridiculous API (crAPI). https://github.com/OWASP/crAPI

Offensive Security. (N.D). Get Kali Linux Download. https://www.kali.org/get-kali

Offensive security offsec. (n.d). Exploit Database. https://www.exploit-db.com

Offensive security offsec. (n.d). Exploits + Shellcode + GHDB. https://gitlab.com/exploit-

database/exploitdb

OWASP, (2023). OWASP API Security Project. https://owasp.org/www-project-api-security

OWASP, (2023). OWASP Top 10 API Security Risks — 2023.
https://owasp.org/API-Security/editions/2023/en/0x11-t10

OWASP, (2021). Top 10 Web Application Security Risks. https://owasp.org/www-project-top-ten

Offensive Security. (n.d). Google Hacking Database. https://www.exploit-db.com/google-hacking-

database

0OJ. (n.d). Directory/File, DNS and VHost busting tool written in Go.
https://github.com/OJ/GoBuster

Paxton, K. (n.d). Katie Paxton-Fear. https://insiderphd.dev

Projectdiscovery. (n.d). Fast passive subdomain enumeration tool.

https://github.com/projectdiscovery/subfinder

Projectdiscovery. (n.d). A next-generation crawling and spidering framework.

https://github.com/projectdiscovery/katana

Projectdiscovery. (n.d). MassDNS wrapper written in go that allows you to enumerate valid

subdomains using active bruteforce as well as resolve subdomains with wildcard handling and easy

input-output support. https://github.com/projectdiscovery/shuffledns

Postman. (n.d). Postman. https://www.postman.com

https://www.postman.com/
https://github.com/projectdiscovery/shuffledns
https://github.com/projectdiscovery/katana
https://github.com/projectdiscovery/subfinder
https://insiderphd.dev/
https://github.com/OJ/GoBuster
https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database
https://owasp.org/www-project-top-ten
https://owasp.org/API-Security/editions/2023/en/0x11-t10
https://owasp.org/www-project-api-security
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://www.exploit-db.com/
https://www.kali.org/get-kali
https://github.com/OWASP/crAPI
https://hackerone.com/reports/924914
https://github.com/offhourscoding/recon
https://github.com/owasp-amass/amass
https://github.com/owasp-amass/amass
https://www.wired.com/story/british-airways-hack-details

Projectdiscovery. (n.d). Fast and customizable vulnerability scanner based on simple YAML based

DSL. https://github.com/projectdiscovery/nuclei

Portswigger. (n.d). Burp Suite Community EditionBurp Suite Community Edition.

https://portswigger.net/burp

Porup, J.M. (2016). How Hacking Team got hacked. https://arstechnica.com/information-
technology/2016/04/how-hacking-team-got-hacked-phineas-phisher

Rapid7, (2023). Under Siege: Rapid7-Observed Exploitation of Cisco ASA SSL VPNs.

https://www.rapid7.com/blog/post/2023/08/29/under-siege-rapid7-observed-exploitation-of-cisco-

asa-ssl-vpns

RustScan. (n.d). The Modern Port Scanner. https://github.com/RustScan/RustScan

ROoth3x49. (n.d). An advanced cross-platform tool that automates the process of detecting and

exploiting SQL injection security flaws. https://github.com/r0oth3x49/ghauri

Rahman, J. (2012). The Anonymous attack on HBGary.
https://www.cs.bu.edu/~goldbe/teaching/HW55812/jarib.pdf

Richer, J. et al. (2016). Understanding API Security.
https://livebook.manning.com/book/understanding-api-security/introduction

Ramsbey, T. (2023). All About API Pentesting! -- [Conversation with Corey Ball from APISec
University!]. https://youtu.be/hl.ggD825Xgw

Stuttard, et al. (2011). The Web Application Hacker's Handbook: Finding and Exploiting Security
Flaws. [Book]

Shah, S. (2021). Contextual Content Discovery: You've forgotten about the API endpoints.

https://blog.assetnote.io/2021/04/05/contextual-content-discovery

Spring, T. (2021). 533M Facebook Accounts Leaked Online: Check if You Are Exposed.

https://threatpost.com/facebook-accounts-leaked-check-exposed/165245

Salmon, D. (2019). I Scraped Millions of Venmo Payments. Your Data Is at Risk.

https://www.wired.com/story/i-scraped-millions-of-venmo-payvments-your-data-is-at-risk

Stateofapis. (2022). How important is API testing? https://stateofapis.com/#testing

SALT. (n.d). OWASP API Security Top 10: Insights from the API Security Trenches.

https://content.salt.security/owasp-api-top-10-2023-ebook

https://content.salt.security/owasp-api-top-10-2023-ebook
https://stateofapis.com/#testing
https://www.wired.com/story/i-scraped-millions-of-venmo-payments-your-data-is-at-risk
https://threatpost.com/facebook-accounts-leaked-check-exposed/165245
https://blog.assetnote.io/2021/04/05/contextual-content-discovery
https://youtu.be/hLggD825Xgw
https://livebook.manning.com/book/understanding-api-security/introduction
https://www.cs.bu.edu/~goldbe/teaching/HW55812/jarib.pdf
https://github.com/r0oth3x49/ghauri
https://github.com/RustScan/RustScan
https://www.rapid7.com/blog/post/2023/08/29/under-siege-rapid7-observed-exploitation-of-cisco-asa-ssl-vpns
https://www.rapid7.com/blog/post/2023/08/29/under-siege-rapid7-observed-exploitation-of-cisco-asa-ssl-vpns
https://arstechnica.com/information-technology/2016/04/how-hacking-team-got-hacked-phineas-phisher
https://arstechnica.com/information-technology/2016/04/how-hacking-team-got-hacked-phineas-phisher
https://portswigger.net/burp
https://github.com/projectdiscovery/nuclei

SALT. (n.d). Protecting APIs From Modern Security Risks. https://content.salt.security/protecting-

apis-from-modern-sec-risks.html

SALT. (n.d). Understanding API Attacks: Why are they different and how can you stop them?
https://content.salt.security/understanding-api-attacks-ebook

SALT. (n.d). API Security Best Practices. https://content.salt.security/wp-api-security-best-
practices.html

SALT. (n.d). How Shift-left Extremism is Harming Your API Security Strategy.
https://content.salt.security/whitepaper-limits-of-shift-left.html

SALT. (n.d). Mapping the MITRE ATT&CK Framework to API Security.

https://content.salt.security/MITRE-attack-framework-to-API-security

Sopas, D. (n.d). Organize your API security assessment by using MindAPI. It's free and open for

community collaboration. https://github.com/dsopas/MindAPI

Sherrard, M. et al. (2022). Liberty Counsel’s Donor Records and Pro-Trump Election Messaging
Exposed in Data Breach. https://theintercept.com/2022/08/25/liberty-counsel-data-breach

Spring, T. (2018). T-Mobile Alerts 2.3 Million Customers of Data Breach Tied to Leaky API.

https://threatpost.com/t-mobile-alerts-2-3-million-customers-of-data-breach-tied-to-leaky-api/

136896

SOmd3v. (n.d). HTTP parameter discovery suite. https://github.com/sOmd3v/Arjun

SambalOx. (n.d). Some of my bug bounty tools. https://github.com/SambalOx/Recon-tools

Six2dez. (n.d). reconFTW is a tool designed to perform automated recon on a target domain by
running the best set of tools to perform scanning and finding out vulnerabilities.

https://github.com/six2dez/reconftw

SolomonSklash. (n.d). A scripted pipeline of tools to streamline the bug bounty/penetration test
reconnaissance phase, so you can focus on chomping bugs.

https://github.com/SolomonSklash/chomp-scan

Shmilylty. (n.d). OneForAll J2 —ZhREsR ARkl & T H. https:/github.com/shmilylty/OneForAll

Screetsec. (n.d). Sudomy is a subdomain enumeration tool to collect subdomains and analyzing
domains performing automated reconnaissance (recon) for bug hunting / pentesting.

https://github.com/Screetsec/Sudomy

https://github.com/Screetsec/Sudomy
https://github.com/shmilylty/OneForAll
https://github.com/SolomonSklash/chomp-scan
https://github.com/six2dez/reconftw
https://github.com/Sambal0x/Recon-tools
https://github.com/s0md3v/Arjun
https://threatpost.com/t-mobile-alerts-2-3-million-customers-of-data-breach-tied-to-leaky-api/136896
https://threatpost.com/t-mobile-alerts-2-3-million-customers-of-data-breach-tied-to-leaky-api/136896
https://theintercept.com/2022/08/25/liberty-counsel-data-breach
https://github.com/dsopas/MindAPI
https://content.salt.security/MITRE-attack-framework-to-API-security
https://content.salt.security/whitepaper-limits-of-shift-left.html
https://content.salt.security/wp-api-security-best-practices.html
https://content.salt.security/wp-api-security-best-practices.html
https://content.salt.security/understanding-api-attacks-ebook
https://content.salt.security/protecting-apis-from-modern-sec-risks.html
https://content.salt.security/protecting-apis-from-modern-sec-risks.html

SilverPoision. (n.d). Rock-On is a all in one Recon tool that will just get a single entry of the

Domain name and do all of the work alone. https://github.com/SilverPoision/Rock-ON

Sahil__soni. (2021). Graphgl introspection is enabled and leaks details about the schema.

https://hackerone.com/reports/1132803

Supernatural. (2015). Bypass access restrictions from API. https://hackerone.com/reports/67557

Swisskyrepo. (n.d). A list of useful payloads and bypass for Web Application Security and
Pentest/CTF. https://github.com/swisskyrepo/PayloadsAllTheThings

Shodan. (n.d). Search Engine for the Internet of Everything. https://www.shodan.io

SSwagger editor. (n.d). Import and edit swagger documentation. https://editor.swagger.io

The Hacker News. (2023). API Security Trends 2023 — Have Organizations Improved their Security

Posture? https://thehackernews.com/2023/10/api-security-trends-2023-have.html

Ticarpi. (n.d). A toolkit for testing, tweaking and cracking JSON Web Tokens.

https://github.com/ticarpi/jwt_tool

The Internet Archive. (n.d). TheWayBackMachine. https://archive.org

Tomnomnom. (n.d). Fetch all the URLSs that the Wayback Machine knows about for a domain.

https://github.com/tomnomnom/waybackurls

TryHackMe. (n.d). OWASP API Security Top 10 - 1.

https://tryvhackme.com/room/owaspapisecuritytop1 05w

TryHackMe. (n.d). OWASP API Security Top 10 - 2.

https://tryvhackme.com/room/owaspapisecuritytop10d0

Taylor, S. (2021). New LinkedIn Data Leak Leaves 700 Million Users Exposed.
https://restoreprivacy.com/linkedin-data-leak-700-million-users

TechOmaha. (2022). Advice from a Former Hacker: Protecting API’s - Alissa Knight.
https://youtu.be/ImkD7KurkMY

Traceable. (2021). API Hacking 101, w/ Dr. Katie Paxton-Fear | by Traceable Al
https://youtu.be/qC8NQFwVORO0

UnderDefense. (2019). API Penetration Testing Report. REST APIPenetration Testing
Reportfor[CLIENT]. https://underdefense.com/wp-content/uploads/2019/05/Anonymised-API-

Penetration-Testing-Report.pdf

https://underdefense.com/wp-content/uploads/2019/05/Anonymised-API-Penetration-Testing-Report.pdf
https://underdefense.com/wp-content/uploads/2019/05/Anonymised-API-Penetration-Testing-Report.pdf
https://youtu.be/qC8NQFwVOR0
https://youtu.be/ImkD7KurkMY
https://restoreprivacy.com/linkedin-data-leak-700-million-users
https://tryhackme.com/room/owaspapisecuritytop10d0
https://tryhackme.com/room/owaspapisecuritytop105w
https://github.com/tomnomnom/waybackurls
https://archive.org/
https://github.com/ticarpi/jwt_tool
https://thehackernews.com/2023/10/api-security-trends-2023-have.html
https://editor.swagger.io/
https://www.shodan.io/
https://github.com/swisskyrepo/PayloadsAllTheThings
https://hackerone.com/reports/67557
https://hackerone.com/reports/1132803
https://github.com/SilverPoision/Rock-ON

Venom26. (n.d). Ultimate Recon Bash Script.
https://github.com/venom26/recon/blob/master/ultimate recon.sh

Vxunderground. (n.d). CobaltStrike MANUALS_V?2 Active Directory - Conti Ransomware

Playbook. https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak/blob/main/
CobaltStrike%20MANUAL V2%?20.docx

Vxunderground, (n.d). Bassterlord (FishEye) Networking Manual.
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware
%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20%28FishEve

%29%20Networking%20Manual%20%28X%29.pdf

Weidman, G. (2014). Penetration Testing: A Hands-On Introduction to Hacking. [Book]

WhatRuns. (n.d). Discover what runs a website. https://www.whatruns.com

Wappalyzer. (n.d). Identify technologies on websites. https://www.wappalyzer.com

Wallwork, A. (2023). Setting up the virtual network - University of Chester. Cyber Concepts and

Techniques - Component 2 — Portfolio.

Wallwork, A. (2023). Penetration Testing Application Programming Interface (API) Security —

University of Chester. Dissertation Presentation.

Oxspade. (n.d). Trying to make automated recon for bug bounties.

https://github.com/Oxspade/Automated-Scanner

Yassineaboukir. (n.d). A list of 3203 common API endpoints and objects designed for fuzzing.

https://gist.github.com/vassineaboukir/8e12adefbd505ef704674ad6ad48743d

Yourbuddy?25. (n.d). A small script for my recon during bug hunting. Needs some modifications.

https://github.com/yourbuddy25/Hunter

Zaproxy. (n.d). Zed Attack Proxy (ZAP). https://www.zaproxy.org

Zoltan, M. (2022). Web Scrapers Claim to Possess and Sell Personal Data on 1.5 Billion Facebook

Users on a Hacker Forum. https://www.privacyaffairs.com/facebook-data-sold-on-hacker-forum

https://www.privacyaffairs.com/facebook-data-sold-on-hacker-forum
https://www.zaproxy.org/
https://github.com/yourbuddy25/Hunter
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d
https://github.com/0xspade/Automated-Scanner
https://www.wappalyzer.com/
https://www.whatruns.com/
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak/blob/main/CobaltStrike%20MANUAL_V2%20.docx
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak/blob/main/CobaltStrike%20MANUAL_V2%20.docx
https://github.com/venom26/recon/blob/master/ultimate_recon.sh

Appendix

Appendix A - Ethical Approval Application

Ethical Approval Application:

Faculty of Science, Business & Enterprise
Science & Engineering Research Project Form - Student

Your Details:

Your Name: Adam Wallwork

Your student number: 1912062

Email Address: 1912062@chester.ac.uk
Programme of Study: Cyber security

Name of Principal Supervisor: Ashley wood

Title of Research Project:

Penetration testing API security

Start date of project:

Anticipated end date of project: 1/04/23

than 150 words):

Please provide a brief summary of the proposed research and why you want to do it (no more

APlIs are becoming increasingly important in modern software development, and are often
used to access sensitive data and services, having direct back-end access. However, APIs
are also vulnerable to a range of security threats, such as IDOR , authentication, SQLi and
other common vulnerabilities featured in the OWASP top 10. Penetration testing is a
technique used to identify and exploit security vulnerabilities in systems and has been
used successfully to improve the security of networks and applications. However, there is
little research on the use of penetration testing to improve API security. Therefore, this
research aims to address this gap in the literature by developing a methodology for
conducting effective penetration testing of APIs and evaluating it's effectiveness.

Please respond to the following questions:

Question

Response

Will your research be based on reviewing existing
literature only?

YesX No [Not sure at this stage [

from an online source?

Will your research involve mathematical modelling | Yes[0 No X Not sure at this stage [
only?

Will your research involve you carrying out testing | YesX No [0 Not sure at this stage [
using an isolated or virtual computer system?

Are you intending to use research data available YesX No O Not sure at this stage [

If yes, have you checked that there are no copyright
or data protection issues involved in you working
with and reproducing this data?

Yes, I've checked and there are no issues X
Yes, I've checked and there are issues [
No, | haven’t checked [J

Will your research involve laboratory work?

Yes X No [Not sure at this stage [

Will your research involve fieldwork?

Yes [No X Not sure at this stage [l

If you have answered ‘yes’ to either of these, have
you carried out a Risk Assessment?

Yes [l No [Not sure at this stage [
no

Risk assessment reference number:

n/a

Will you need to liaise with the Laboratory
Manager regarding any special requirements to be
observed in addition to standard lab procedures and
PPE?

Yes [l No X
Virtual lab environemtn (Virtual machine)

Will your project involve you having direct contact
with human participants, e.g. through interviews,
focus groups, data gathering via questionnaires,
surveys on social media, etc.?

Yes[J No X Not sure at this stage [

Will your project involve you having direct contact
with animals or animal tissues?

Yes [l No X Not sure at this stage [

If you are not working directly with animals, or
animal tissues, are you using research data about
these which has collected by another person or
organisation?

Yes [0 No X Not sure at this stage [

Is permission needed to use this data?

Yes, permission is needed and | have got
permission [J

No permission is required X

I haven't checked [J

Does your project involve the NHS in any way?

Yes [0 No X Not sure at this stage [

Is your project likely to engage with the natural Yesd No X Not sure at this stage [
environment, e.g. by utilising samples collected

from nature, producing hazardous chemical by-

products, creating noise pollution, etc.?

Will your project, including data-gathering or YesX No O Not sure at this stage [

collaborative activities, involve research outside of
England?

Data gathering yes. Outside of England
(physically) no.

If you are likely to travel outside of England to
conduct research, where are you intending to go?

Please provide details:

Are you aware of any risks to you in travelling to YesCl No OO n/a

the destinations named above?

Do you think this project might need ethical Yes[0 No O n/a
approval?

Have you discussed this with your supervisor? YesCl No OO n/a
Your signature: Adam Thomas Wallwork

Supervisor’s Signature:

T

Comments from the Science & Engineering
Research Ethics Committee

No ethical issues identified.

Signature of the Chair of the Science &
Engineering Research Ethics Committee:

Date:

03/04/23

Appendix B - Hacking Guides and Methodologies

Description

Link

Guacamaya leaks (Barr, et al., 2023) against
latin american police, military, government and
private industry in HackBack video tutorial of

how the hack took place.

https://enlacehacktivista.org/hackback2.webm

Leaked (Abrams, 2021) Conti Ransomware
hacking manuals for affiliates to hack, exfiltrate

and execute ransomware payload (Ilascu, 2021).

https://github.com/ForbiddenProgrammer/conti-
pentester-guide-leak

Explanation of the hack against the spyware

company Flexispy (Cox, et al. 2017).

https://enlacehacktivista.org/images/8/8f/
Flexispy.txt

Explanation of the hack against the Christian
ministry in protest against abortion rights

(Sherrard, et al. 2022).

https://enlacehacktivista.org/libertycounsel.txt

Phineas Fishers HackBack video of the hack
against the Spanish Catalan Police Union

website (Cox, 2016).

https://www.voutube.com/watch?

v=kCLDgvDnGzA

HackBack video tutorial from the Guacamaya
hacktivist group of them hacking the Pronico

Nickel Mine company (Forbiddenstories, n.d).

https://kolektiva.media/w/

twJjCTkvumnugRy61BjD3T

Jason Haddix’s Bug Bounty Hunter web
application hacking methodology for application
analysis (HackerOne, 2022).

https://www.youtube.com/watch?

v=FgnSAa2KmBI

Jason Haddix’s Bug Bounty Hunter
reconnaissance web application hacking

methodology (NahamSec, 2020).

https://www.voutube.com/watch?

v=p4Jglulmcel

Phineas Fishers HackBack DIY Guide #3 for
hacking into the cayman national bank in isle of

man (Cox, 2019).

https://theanarchistlibrary.org/library/

subcowmandante-marcos-hack-back

Phineas Fishers HackBack DIY Guide #2 for

https://enlacehacktivista.org/images/a/a3/

https://enlacehacktivista.org/images/a/a3/Hack_back2_en.txt
https://theanarchistlibrary.org/library/subcowmandante-marcos-hack-back
https://theanarchistlibrary.org/library/subcowmandante-marcos-hack-back
https://www.youtube.com/watch?v=p4JgIu1mceI
https://www.youtube.com/watch?v=p4JgIu1mceI
https://www.youtube.com/watch?v=FqnSAa2KmBI
https://www.youtube.com/watch?v=FqnSAa2KmBI
https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T
https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T
https://www.youtube.com/watch?v=kCLDqvDnGzA
https://www.youtube.com/watch?v=kCLDqvDnGzA
https://enlacehacktivista.org/libertycounsel.txt
https://enlacehacktivista.org/images/8/8f/Flexispy.txt
https://enlacehacktivista.org/images/8/8f/Flexispy.txt
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak
https://enlacehacktivista.org/hackback2.webm

hacking into the Hack Team (Bicchierai, 2016).

Hack back? en.txt

Phineas Fishers HackBack DIY Guide #1 for
hacking into Gamma Group International (Blue,

2014).

https://enlacehacktivista.org/images/6/69/
Hack backl.txt

Ransomware affiliate Bassterlord Network
Hacking manual for ransoming companies

exploiting Fortinet SSL VPN (DiMaggio, n.d).

https://web.archive.org/web/20230531145531/

https://papers.vx-underground.org/papers/
Malware%20Defense/Malware%20Analysis
%202021/2021-08-31%20-%20Bassterlord
%20%28FishEye%29%20Networking
%20Manual%20%28X %29.pdf

Ransomware affiliate Bassterlord Network
Hacking manual for ransoming companies by
means of brute-forcing and password spraying
Cisco and Fortinet SSL. VPNs using metasploit
modules (Rapid7, 2023).

https://web.archive.org/web/
20230531144434if /https://cdn-

151.anonfiles.com/vcD868ubz5/08a9b897-
1685544763/Basterl.ord+-

+Network+manual+v2.0.pdf

Conti Ransomware Hacking Playbook (Cyble,
2021).

https://web.archive.org/web/
20230404175503if /https://cdn-
150.anonfiles.com/satbX?2i8z2/75a3be58-

1680631481/Conti_playbook_translated.pdf

Appendix C - Xmind

Xmind was used to make figures 2, 3, and 4 in Chapter 1 — Introduction. https://xmind.app

Appendix D - Grammarly

Grammarly was used during this research dissertation project to correct grammar, punctuation and

spelling errors. https://app.grammarly.com

Appendix E - Postman

Postman could not be used during our research because it requires an active internet connection.

However, as it is a API-specific intercepting proxy, much like Burpsuite, we note it as a valid tool to

use during real-world penetration testing engagements. https://www.postman.com

https://www.postman.com/
https://app.grammarly.com/
https://xmind.app/
https://web.archive.org/web/20230404175503if_/https://cdn-150.anonfiles.com/satbX2i8z2/75a3be58-1680631481/Conti_playbook_translated.pdf
https://web.archive.org/web/20230404175503if_/https://cdn-150.anonfiles.com/satbX2i8z2/75a3be58-1680631481/Conti_playbook_translated.pdf
https://web.archive.org/web/20230404175503if_/https://cdn-150.anonfiles.com/satbX2i8z2/75a3be58-1680631481/Conti_playbook_translated.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://enlacehacktivista.org/images/6/69/Hack_back1.txt
https://enlacehacktivista.org/images/6/69/Hack_back1.txt
https://enlacehacktivista.org/images/a/a3/Hack_back2_en.txt
https://enlacehacktivista.org/images/a/a3/Hack_back2_en.txt

Appendix F —

Recon Automation Scripts

Tool Bash scripts that automate the reconnaissance process
ReconFTW https://github.com/six2dez/reconftw
BountyRecon https://github.com/Admiral Gaust/bountyRecon

Recon

https://github.com/offhourscoding/recon

Recon-Tools

https://github.com/SambalO0x/Recon-tools

Hunter https://github.com/yourbuddy25/Hunter

UltimateRecon https://github.com/venom26/recon/blob/master/ultimate recon.sh

St8out https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd
LazyRecon https://github.com/capt-meelo/LazyRecon

Automated-Scanner

https://github.com/0Oxspade/Automated-Scanner

OneForAll https://github.com/shmilylty/OneForAll
Chomp-Scan https://github.com/SolomonSklash/chomp-scan
Sudomy https://github.com/Screetsec/Sudomy
Findomain https://github.com/Findomain/Findomain
Rock-ON https://github.com/SilverPoision/Rock-ON

Recon-Pipeline

https://github.com/epi052/recon-pipeline

Appendix G -

Bug Bounty Responsible Disclosure Reports

The table below identified bug bounty reports specific to APIs. The focus of the table is to show

real-world API wvulnerabilities and their impact and how the researcher communicates to the

organisation the vulnerability discovered, which is a crucial skill in penetration testing. We could

not find real-world penetration testing reports for APIs as they are often not publicly available, so

we chose to use public bug bounty programs and their reports.

REST - Bug Bounty Report

Description

Researcher

Report

Bypass access restrictions from

API

Users who had limited access to
login to the Shopifys mobile

application could capture with an

supernatural

https://hackerone.com/

reports/67557

https://hackerone.com/reports/67557
https://hackerone.com/reports/67557
https://github.com/epi052/recon-pipeline
https://github.com/SilverPoision/Rock-ON
https://github.com/Findomain/Findomain
https://github.com/Screetsec/Sudomy
https://github.com/SolomonSklash/chomp-scan
https://github.com/shmilylty/OneForAll
https://github.com/0xspade/Automated-Scanner
https://github.com/capt-meelo/LazyRecon
https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd
https://github.com/venom26/recon/blob/master/ultimate_recon.sh
https://github.com/yourbuddy25/Hunter
https://github.com/Sambal0x/Recon-tools
https://github.com/offhourscoding/recon
https://github.com/AdmiralGaust/bountyRecon
https://github.com/six2dez/reconftw

intercepting proxy (MITM) their
access tokens to be able to query
Shopifys API to create new users
with higher privileges, giving them
the ability to add and remove users
with the highest level system

account privileges on the platform.

No brute force protection on Though there might be brute-force |hensis https://hackerone.com/
web-api-cloud.acronis.com protections on authentication reports/972045
portals such as login pages, there
were no such protections on the
APIL
API on campus-vtc.com allows |Excessive data exposure on one of |healdb https://hackerone.com/
access to ~100 Uber users full | Uber's API endpoints, which reports/580268
names, email addresses and exposed the personal information
telephone numbers. (PII) of registered users.
Missing authentication in buddy |Account takeover and privilege e26174222 | https://hackerone.com/
group API of LINE TIMELINE |escalation vulnerability via request reports/1283938
header manipulation in the API.
Bumble API exposes read status |Read receipts in private messages is |ndrong https://hackerone.com/
of chat messages not a feature offered to users. reports/1080437
However, by making an HTTP
POST request to the API endpoint,
it is possible to see if users have or
have not read the sent messages.
GraphQL - Bug Bounty Report Description Researcher Report

[NR Infrastructure] Bypass of
#200576 through GraphQL
query abuse - allows restricted
user access to root account

license key

Improper authorisation controls in
place allow a user to access

privileged account information.

jon_bottarini

https://hackerone.com/

reports/276174

Private System Note Disclosure

using GraphQL

Account features to access user

account information are restricted

ngalog

https://hackerone.com/

https://hackerone.com/reports/633001
https://hackerone.com/reports/276174
https://hackerone.com/reports/276174
https://hackerone.com/reports/1080437
https://hackerone.com/reports/1080437
https://hackerone.com/reports/1283938
https://hackerone.com/reports/1283938
https://hackerone.com/reports/580268
https://hackerone.com/reports/580268
https://hackerone.com/reports/972045
https://hackerone.com/reports/972045

to members only. However, via a
GraphQL endpoint, non-members

can see member information.

reports/633001

Access to information about any
video and its owner via
GraphQL endpoint

[dictor.mail.ru]

An insecure Direct Object
Reference vulnerability in a
GraphQL query endpoint allows
information otherwise unavailable
to the user requesting the

information.

organdonor

https://hackerone.com/

reports/924914

Graphgql introspection is enabled
and leaks details about the

schema

GraphQL introspection, meant to be
disabled once deployed into
production, enabled the researcher

to enumerate the endpoints schema.

sahil _soni

https://hackerone.com/

reports/1132803

[h1-2102] shopApps query from
the graphgql at /users/api returns
all existing created apps,

including private ones

Shopify GraphQL endpoint allows
unauthorised users to view private
applications on the Shopify

platform.

inhibitor181

https://hackerone.com/

reports/1085332

Appendix H — API Specific penetration testing tools and

resources

Tool Resource
Kiterunner https://github.com/assetnote/kiterunner
Postman https://www.postman.com
JWT Tool https://github.com/ticarpi/jwt_tool
Graphw00f https://github.com/dolevf/graphw00f

Zaproxy GraphQL Introspection enumeration

https://www.zaproxy.org/blog/2020-08-28-

add-on introducing-the-graphgl-add-on-for-zap
Arjun https://github.com/sOmd3v/Arjun
JWT Hacking Tricks https://github.com/swisskyrepo/

PayloadsAllTheThings/tree/master/JSON
%20Web%20Token

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token
https://github.com/s0md3v/Arjun
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://github.com/dolevf/graphw00f
https://github.com/ticarpi/jwt_tool
https://www.postman.com/
https://github.com/assetnote/kiterunner
https://hackerone.com/reports/1085332
https://hackerone.com/reports/1085332
https://hackerone.com/reports/1132803
https://hackerone.com/reports/1132803
https://hackerone.com/reports/924914
https://hackerone.com/reports/924914
https://hackerone.com/reports/633001
https://hackerone.com/reports/633001

NSE script for GraphQL introspection

https://github.com/dolevf/nmap-graphgl-

introspection-nse

GraphQL schema enumeration

https://github.com/nikitastupin/clairvoyance

Decode online JWT tokens

https://jwt.io

API Hacking word lists

https://gist.github.com/yassineaboukir/
8el12adefbd505ef704674ad6ad48743d

API Hacking word lists

https://github.com/chrislockard/api wordlist

API Hacking word lists for GraphQL

https://github.com/danielmiessler/SecLists/
blob/master/Discovery/Web-Content/graphgl.txt

General API common names and endpoints

word lists

https://github.com/hAPI-hacker/Hacking-APIs

https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/graphql.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/graphql.txt
https://github.com/chrislockard/api_wordlist
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d
https://jwt.io/
https://github.com/nikitastupin/clairvoyance
https://github.com/dolevf/nmap-graphql-introspection-nse
https://github.com/dolevf/nmap-graphql-introspection-nse

	Abstract
	Disclaimer
	Acknowledgements
	1. Chapter 1 - Introduction
	1.1 Background and Context
	1.2 Problem Statement
	1.3 Rationale for the Study
	1.4 Research Question
	1.5 Research Hypothesis
	1.6 Objectives of the Study
	1.7 Scope of the Study
	1.8 Limitations of the Study
	1.9 API Hacking Methodology Overview
	1.10 API Vulnerabilities – OWASP TOP TEN
	1.11 Conclusion

	2. Chapter 2 - Literature Review
	2.1 Introduction
	2.2 Theoretical Foundations
	2.3 Literature Sourcing Process
	2.3.1 Inclusion Criteria
	2.3.1.1 Relevance to Topic
	2.3.1.2 Time Frame
	2.3.1.3 Type of Literature

	2.3.2 Exclusion Criteria
	2.3.2.1 Irrelevance to API hacking
	2.3.2.2 Time frame
	2.3.2.3 Authorship and Contribution

	2.3.3 Search Strategy
	2.3.4 Databases

	2.4 Research Methodology in Cybersecurity
	2.5 State of the Art in API Security
	2.6 Penetration Testing
	2.6.1 General Principles and Techniques

	2.7 API Penetration Testing
	2.7.1 API Vulnerabilities
	2.7.2 OWASP TOP TEN
	2.7.3 Comparable Frameworks
	2.7.4 Data Breaches via API Exploitation

	2.8 Interdisciplinary Considerations
	2.8.1 Legal
	2.8.2 Ethical Concerns
	2.8.3 Business Implications

	2.9 Identified Research Gaps
	2.9.1 API Security
	2.9.2 Penetration Testing and Ethical Hacking
	2.9.3 Data breaches
	2.9.4 API Vulnerabilities and Exploitation
	2.9.5 API Development and Secure Coding Practices

	2.10 Relevance to Hypothesis
	2.11 Critical Discussion
	2.11.1 API Security
	2.11.2 Penetration Testing and Ethical Hacking
	2.11.3 Data breaches
	2.11.4 API Vulnerabilities and Exploitation
	2.11.5 API Development and Secure Coding Practices

	2.12 Conclusion

	3. Chapter 3 – Research Methodology
	3.1 Introduction
	3.2 Background and Justification
	3.3 Research Approach
	3.4 Tool Selection
	3.5 Ethical Considerations
	3.6 Virtualised Testing Environment
	3.7 The Importance of a Methodology
	3.7.1 Limitations of the Methodology

	3.8 Configuring The Testing Environment
	3.8.1 Attackers Machine

	3.9 Conclusion

	4. Chapter 4 – Research Implementation
	4.1 Introduction
	4.2 Kali Linux - Tester
	4.2.1 Vulnerable API Machines
	4.2.1.1 OWASP Juice Shop
	4.2.1.2 Completely Ridiculous API - OWASP crAPI
	4.2.1.3 Damn Vulnerable GraphQL Application – DVGA
	4.2.1.4 VAmPI
	4.2.1.5 OWASP Pixi

	4.3 The API Penetration Testers Methodology
	4.4 Information Gathering
	4.4.1 API Identification
	4.4.2 API Documentation Review
	4.4.3 Authentication & Authorisation
	4.4.4 Tool Summary

	4.5 Reconnaissance
	4.5.1 Passive
	4.5.1.1 Dorking
	4.5.1.2 DNS Enumeration
	4.5.1.3 Technology Identification
	4.5.1.4 Vulnerability Search
	4.5.1.5 Discovering Historical Data

	4.5.2 Active
	4.5.2.1 Port scanning
	4.5.2.2 Subdomain Enumeration
	4.5.2.3 Walking The Application
	4.5.2.4 Web Crawling – Spidering
	4.5.2.5 Technology Identification
	4.5.2.6 Source Code Analysis – JavaScript

	4.5.3 Tool Summary

	4.6 Content Discovery
	4.6.1 Subdomain Brute-Forcing
	4.6.2 Directory Brute-Forcing
	4.6.2.1 File Brute-Forcing

	4.6.3 Endpoint Analysis
	4.6.4 API Version Discovery
	4.6.5 Parameter Fuzzing
	4.6.6 Tool Summary

	4.7 Vulnerability and Misconfiguration Scanning – Automated
	4.7.1 Tool Summary

	4.8 API Analysis
	4.8.1 Broken Object Level Authorisation - BOLA

	5. Chapter 5 - Testing
	5.1 Introduction
	5.2 Testing Environment Setup
	5.3 Application of the API Penetration Testers Methodology
	5.3.1 Information Gathering
	5.3.1.1 API Identification
	5.3.1.2 Documentation Review
	5.3.1.3 Authentication Analysis

	5.3.2 Reconnaissance
	5.3.2.1 Port Scanning
	5.3.2.2 Technology Identification

	5.3.3 Content Discovery
	5.3.4 Endpoint Analysis
	5.3.5 Vulnerability Scanning
	5.3.6 API Analysis
	5.3.7 Exploitation

	6. Chapter 6 – Discussion and Conclusion
	6.1 Introduction
	6.2 Research Context
	6.3 Hypothesis Revisited
	6.4 Recap of The Literature Review
	6.5 Research Methodology Overview
	6.6 Research Implementation Overview
	6.7 Testing and Results Summary
	6.7.1 Effectiveness
	6.7.2 Limitations and Challenges
	6.7.3 Areas for Improvement
	6.7.3.1 Expand testing
	6.7.3.2 Modularise the Methodology
	6.7.3.3 Documentation & Note Taking

	6.8 Research Reflections
	6.8.1 Objectives
	6.8.2 Findings
	6.8.3 Contributions

	6.9 Recommendations for Future Work
	6.10 Dissertation Research Project Conclusion

	References
	Appendix
	Appendix A - Ethical Approval Application
	Appendix B - Hacking Guides and Methodologies
	Appendix C - Xmind
	Appendix D - Grammarly
	Appendix E - Postman
	Appendix F – Recon Automation Scripts
	Appendix G – Bug Bounty Responsible Disclosure Reports
	Appendix H – API Specific penetration testing tools and resources

