
 

Penetration Testing API Security

Adam Thomas Wallwork

October - 2023

 MSc. Research Dissertation

Department of Computer Science



Abstract
With the constant increase in data breaches (GOV UK, 2022), the need for a different approach 

emerges. The practice of offensive penetration testing to simulate real-world threat actors has 

become an integral part of the defence strategy. Web applications, network services, and the cloud 

are heavily researched and well-understood aspects of cyber security where we see a lot of testing, 

innovation, research and development. However, what's noticeably missing is API security, more 

specifically, an offensive security strategy that seeks to discover the potential attack vectors 

favoured by threat actors.

In this research project, we seek to develop a robust and thorough API penetration testing 

methodology that can be used by both security professionals to better test API security and as an 

awareness document for developers of the growing threat APIs pose to organisation's data and how 

threat actors go through your infrastructure to identify vulnerabilities for exploitation.



Disclaimer
This work is original by the author and has not been previously submitted to support any other

course or qualification (6/9/23).



Acknowledgements
I want to thank my dissertation supervisor, Ashley Wood, for their help and assistance throughout

this research dissertation project.



Table of Contents
Abstract.................................................................................................................................................2
Disclaimer.............................................................................................................................................3
Acknowledgements..............................................................................................................................4
1. Chapter 1 - Introduction...................................................................................................................9

1.1 Background and Context...........................................................................................................9
1.2 Problem Statement.....................................................................................................................9
1.3 Rationale for the Study............................................................................................................10
1.4 Research Question...................................................................................................................11
1.5 Research Hypothesis................................................................................................................11
1.6 Objectives of the Study............................................................................................................11
1.7 Scope of the Study...................................................................................................................14
1.8 Limitations of the Study..........................................................................................................14
1.9 API Hacking Methodology Overview.....................................................................................14
1.10 API Vulnerabilities – OWASP TOP TEN..............................................................................17
1.11 Conclusion.............................................................................................................................18

2. Chapter 2 - Literature Review........................................................................................................19
2.1 Introduction..............................................................................................................................19
2.2 Theoretical Foundations...........................................................................................................31
2.3 Literature Sourcing Process.....................................................................................................33

2.3.1 Inclusion Criteria..............................................................................................................34
2.3.1.1 Relevance to Topic...................................................................................................34
2.3.1.2 Time Frame...............................................................................................................34
2.3.1.3 Type of Literature.....................................................................................................34

2.3.2 Exclusion Criteria............................................................................................................35
2.3.2.1 Irrelevance to API hacking.......................................................................................35
2.3.2.2 Time frame...............................................................................................................35
2.3.2.3 Authorship and Contribution....................................................................................36

2.3.3 Search Strategy................................................................................................................36
2.3.4 Databases.........................................................................................................................37

2.4 Research Methodology in Cybersecurity.................................................................................37
2.5 State of the Art in API Security...............................................................................................39
2.6 Penetration Testing...................................................................................................................39

2.6.1 General Principles and Techniques..................................................................................39
2.7 API Penetration Testing...........................................................................................................40

2.7.1 API Vulnerabilities...........................................................................................................40
2.7.2 OWASP TOP TEN...........................................................................................................40
2.7.3 Comparable Frameworks.................................................................................................41
2.7.4 Data Breaches via API Exploitation.................................................................................41

2.8 Interdisciplinary Considerations..............................................................................................47
2.8.1 Legal.................................................................................................................................47
2.8.2 Ethical Concerns..............................................................................................................49
2.8.3 Business Implications......................................................................................................49

2.9 Identified Research Gaps.........................................................................................................50
2.9.1 API Security.....................................................................................................................50
2.9.2 Penetration Testing and Ethical Hacking.........................................................................50
2.9.3 Data breaches...................................................................................................................50
2.9.4 API Vulnerabilities and Exploitation...............................................................................50
2.9.5 API Development and Secure Coding Practices..............................................................51

2.10 Relevance to Hypothesis........................................................................................................51
2.11 Critical Discussion.................................................................................................................52



2.11.1 API Security...................................................................................................................52
2.11.2 Penetration Testing and Ethical Hacking.......................................................................52
2.11.3 Data breaches.................................................................................................................52
2.11.4 API Vulnerabilities and Exploitation..............................................................................53
2.11.5 API Development and Secure Coding Practices............................................................53

2.12 Conclusion.............................................................................................................................53
3. Chapter 3 – Research Methodology...............................................................................................54

3.1 Introduction..............................................................................................................................54
3.2 Background and Justification...................................................................................................54
3.3 Research Approach..................................................................................................................54
3.4 Tool Selection..........................................................................................................................56
3.5 Ethical Considerations.............................................................................................................60
3.6 Virtualised Testing Environment.............................................................................................60
3.7 The Importance of a Methodology..........................................................................................63

3.7.1 Limitations of the Methodology......................................................................................63
3.8 Configuring The Testing Environment....................................................................................64

3.8.1 Attackers Machine............................................................................................................64
3.9 Conclusion...............................................................................................................................64

4. Chapter 4 – Research Implementation...........................................................................................65
4.1 Introduction..............................................................................................................................65
4.2 Kali Linux - Tester...................................................................................................................65

4.2.1 Vulnerable API Machines................................................................................................66
4.2.1.1 OWASP Juice Shop..................................................................................................67
4.2.1.2 Completely Ridiculous API - OWASP crAPI..........................................................68
4.2.1.3 Damn Vulnerable GraphQL Application – DVGA..................................................69
4.2.1.4 VAmPI......................................................................................................................70
4.2.1.5 OWASP Pixi.............................................................................................................71

4.3 The API Penetration Testers Methodology..............................................................................72
4.4 Information Gathering.............................................................................................................73

4.4.1 API Identification.............................................................................................................73
4.4.2 API Documentation Review.............................................................................................76
4.4.3 Authentication & Authorisation.......................................................................................77
4.4.4 Tool Summary..................................................................................................................79

4.5 Reconnaissance........................................................................................................................79
4.5.1 Passive..............................................................................................................................80

4.5.1.1 Dorking.....................................................................................................................80
4.5.1.2 DNS Enumeration....................................................................................................82
4.5.1.3 Technology Identification.........................................................................................83
4.5.1.4 Vulnerability Search.................................................................................................83
4.5.1.5 Discovering Historical Data.....................................................................................84

4.5.2 Active...............................................................................................................................85
4.5.2.1 Port scanning............................................................................................................85
4.5.2.2 Subdomain Enumeration..........................................................................................87
4.5.2.3 Walking The Application..........................................................................................89
4.5.2.4 Web Crawling – Spidering.......................................................................................91
4.5.2.5 Technology Identification.........................................................................................95
4.5.2.6 Source Code Analysis – JavaScript..........................................................................98

4.5.3 Tool Summary................................................................................................................100
4.6 Content Discovery.................................................................................................................100

4.6.1 Subdomain Brute-Forcing..............................................................................................101
4.6.2 Directory Brute-Forcing.................................................................................................101

4.6.2.1 File Brute-Forcing..................................................................................................103



4.6.3 Endpoint Analysis..........................................................................................................104
4.6.4 API Version Discovery...................................................................................................107
4.6.5 Parameter Fuzzing..........................................................................................................107
4.6.6 Tool Summary................................................................................................................108

4.7 Vulnerability and Misconfiguration Scanning – Automated.................................................109
4.7.1 Tool Summary................................................................................................................109

4.8 API Analysis...........................................................................................................................110
4.8.1 Broken Object Level Authorisation - BOLA.................................................................110

5. Chapter 5 - Testing........................................................................................................................121
5.1 Introduction............................................................................................................................121
5.2 Testing Environment Setup....................................................................................................121
5.3 Application of the API Penetration Testers Methodology.....................................................122

5.3.1 Information Gathering....................................................................................................123
5.3.1.1 API Identification...................................................................................................123
5.3.1.2 Documentation Review..........................................................................................124
5.3.1.3 Authentication Analysis..........................................................................................125

5.3.2 Reconnaissance..............................................................................................................127
5.3.2.1 Port Scanning.........................................................................................................128
5.3.2.2 Technology Identification.......................................................................................128

5.3.3 Content Discovery..........................................................................................................129
5.3.4 Endpoint Analysis..........................................................................................................129
5.3.5 Vulnerability Scanning...................................................................................................130
5.3.6 API Analysis...................................................................................................................131
5.3.7 Exploitation....................................................................................................................133

6. Chapter 6 – Discussion and Conclusion.......................................................................................135
6.1 Introduction............................................................................................................................135
6.2 Research Context...................................................................................................................135
6.3 Hypothesis Revisited.............................................................................................................135
6.4 Recap of The Literature Review............................................................................................135
6.5 Research Methodology Overview.........................................................................................136
6.6 Research Implementation Overview......................................................................................136
6.7 Testing and Results Summary................................................................................................137

6.7.1 Effectiveness..................................................................................................................137
6.7.2 Limitations and Challenges............................................................................................137
6.7.3 Areas for Improvement..................................................................................................137

6.7.3.1 Expand testing........................................................................................................137
6.7.3.2 Modularise the Methodology.................................................................................138
6.7.3.3 Documentation & Note Taking..............................................................................138

6.8 Research Reflections..............................................................................................................138
6.8.1 Objectives.......................................................................................................................138
6.8.2 Findings..........................................................................................................................141
6.8.3 Contributions..................................................................................................................141

6.9 Recommendations for Future Work.......................................................................................141
6.10 Dissertation Research Project Conclusion...........................................................................142

References........................................................................................................................................144
Appendix..........................................................................................................................................158

Appendix A - Ethical Approval Application................................................................................158
Appendix B - Hacking Guides and Methodologies.....................................................................160
Appendix C - Xmind....................................................................................................................161
Appendix D - Grammarly............................................................................................................161
Appendix E - Postman.................................................................................................................161
Appendix F – Recon Automation Scripts....................................................................................162



Appendix G – Bug Bounty Responsible Disclosure Reports......................................................162
Appendix H – API Specific penetration testing tools and resources...........................................164



1.    Chapter 1 - Introduction

1.1    Background and Context

Application Programming Interfaces (APIs) are commonly used to communicate with third-party 

services and transfer data and can be found in IoT devices, vehicles (Lakshmanan, 2023), mobile 

applications, financial services and more. APIs can pose a significant risk to organisations, as we 

have seen from data breaches where the attack vector was the targeting and exploitation of the 

organisation's API. It was reported that 83% of all web traffic on the internet is related to APIs 

(Mathur, 2020), and two-thirds of all cloud breaches were due to misconfigured and exposed API 

secrets (keys and tokens) (IBM Security X-Force Threat Intelligence, 2021). Gartner predicted in 

2021 (Novikov, 2022) that by 2022, the targeting and exploitation of API vulnerabilities will 

surpass any other form of exploitation attacks and become the dominant vector for attacks to steal 

data and cause a data breach incident.

In light of these statistics and the knowledge of how much of significant risk APIs can pose, we 

seek to develop a robust and thorough API penetration testing hacking methodology which will 

serve as a framework for penetration testers and developers to become aware of the risks and 

measures that they should take to better secure their APIs through secure coding practices to 

offensive security testing.

Although there exists already penetration testing methodologies (HackerOne, 2022) for web 

application hacking (NahamSec, 2020) and cyber criminal hacking writeups (see Appendix B), most

ethical professionals do not openly share their hacking methodologies either because it is making 

them good money in bug bounties or professionally or because they might think they are not good 

enough to add value with sharing their methodology. There currently does not exist a similar 

innovation for API hacking in terms of a robust methodology, and this is the gap we seek to fill.

1.2    Problem Statement

Penetration testers are unaware of the differences between web applications and API hacking. This 

was made clear in the Inspector General USPS penetration test report (Inspector General, 2018), 

where the testers used web application penetration testing tools and techniques to test USPS APIs, 

which they returned with a verdict that they identified some minor issues however, nothing 

significant, later in 2018 it was reported (Krebs, 2018) that there was found to be a critical 

vulnerability within the API that leaked over sixty million user accounts publicly (Avertium, 2022).



Our research project aims to close the knowledge and skill gap between web application and API 

hacking to inform security testers and developers and make them aware of the differences and 

significant risks that APIs can pose to organisational data. This point is driven home by Stateofapis 

(Stateofapis, 2022), who surveyed developers, and it found that only 4% of all respondents stated 

that they would security test their APIs (see Figure 1).

API hacking is new, and there is not much literature or practical labs that focus on training 

individuals (TryHackMe, n.d) to learn how to hack APIs or teach others how to approach hacking 

APIs and what to look for during their testing. There is no standard API hacking methodology 

others can learn from, take and build upon to further their penetration testing, bug bounty or 

contract penetration testing engagements.

Figure 1:  Stateofapis developer survey (Stateofapis, 2022)

1.3    Rationale for the Study

The focus of this research is to develop a thorough API security-specific penetration testing 

methodology to ensure the security of an API. We believe that by creating a robust and thorough 

API penetration testing methodology that follows all the latest security trends in the field, we can 

deliver a methodology that security testers can use proactively to effectively penetration test APIs 

and provide the client and themselves with the assurance that they have tested thoroughly, identified

possible vulnerabilities and or have validated the currently implemented security controls. The idea 

is to provide a deliverable you can use out of the box or build upon to better test APIs and clearly 



show the difference between web application security assessments and API penetration testing 

engagements.

Data breaches used to occur commonly due to low-hanging fruit vulnerabilities such as sequel 

injection (SQLi) (Rahman, 2012), local file inclusion (LFI), remote file inclusion (RFI) and remote 

code execution (RCE), as was seen with Sony (Kumar, 2011), X-Factor (Arthur, 2013) and 

RockYou (Cubrilovic, 2009). However, in the past decade, large-scale data breaches have occurred 

due to exploiting API vulnerabilities and misconfigurations (see Table 14).

1.4    Research Question

Our primary research question, which underpins the following research dissertation project, is how 

API penetration testing can be conducted effectively to improve the security posture of APIs and 

prevent data breaches by exploiting API vulnerabilities. We aim to answer this question by 

developing a penetration testing methodology and performing testing using the developed 

methodology and analysing the test results to assess how effective it is and whether it works or not.

1.5    Research Hypothesis

We hypothesise that implementing an effective API penetration testing methodology will 

significantly enhance the security posture of APIs and reduce the risk of a data breach by means of 

reducing the attack surface and discovering vulnerabilities before the threat actors do (Kumar, 

2019).

1.6    Objectives of the Study

The core research objectives that we seek to achieve by the end of our research are as follows:

Main Objectives Reason

Develop a robust and thorough API penetration 

testing methodology.

To stunt the progression at which we see data 

breaches occur because of API exploits, we need

to develop and provide testers and developers 

with a methodology to test their APIs better and 

learn common attack vectors favoured by threat 

actors so that the tester can discover the same 

vulnerabilities as the threat actor. This would 

result in a more secure API security posture and 



reduce the opportunity for attackers to cause a 

data breach in the organisation.

Identify the most prevalent API-specific 

vulnerabilities.

To ensure that we can effectively test and secure 

APIs, we need to be aware of the most common 

and critical vulnerabilities that APIs can be 

exposed to so that we can look for them during 

our testing and remediate them.

Identify the key tools to use in the methodology. Similar to identifying the most critical 

vulnerabilities to which APIs can be exposed, 

we need to source the correct tools, services, and

resources to use during our testing to streamline 

our tests specifically to APIs. This ensures we 

discover API vulnerabilities and reduces the 

chance of discovering false positive web 

application vulnerabilities. Also, tools designed 

for web applications may not work when used 

on APIs because they differ in design and 

architecture.

Research penetration testing tips and tricks 

relevant to API hacking.

When reading through our sourced body of 

literature (see Table 5), bug bounty reports (see 

Appendix G) and methodologies (see Table 16, 

we need to analyse and identify relevant tips and

tricks that can commonly work against most 

APIs and are good areas to quickly cover to 

ensure we find low hanging fruit vulnerabilities 

before delving deeper into the test ensuring good

ground coverage throughout the penetration test.

Cover the walk-through of at least one 

vulnerability and show it’s impact.

Broken Object Level Authorisation (BOLA) is 

currently (2023) the most common and critical 

API vulnerability (OWASP, 2023) that results in 

the biggest impact when exploited. For this 

reason, we will prioritise its demonstration in 

our implementation.



Demonstrate how to set up the testing 

environment.

To test our implementation and provide practical

demonstrations through the methodology for 

clarity, we will set up a virtual testing lab, which

will use VirtualBox to isolate the machines and 

the network. This also ensures ethical 

compliance for the ethics committee (see 

Appendix A). The machines that will be used 

will be vulnerable API machines to perform 

testing against, and we will test from a Kali 

Linux machine, making it clear who the tester 

and server are.

Ensure the methodology is reproducible and 

actionable.

To ensure that the methodology can be 

reproduced and to allow readers not to have to 

read through the whole methodology each time 

they want to refer back to something relevant to 

their specific engagement, we produce a tool 

and cheat sheet table with all the commands and 

tools used during the methodology with tips and 

tricks.

Understand why APIs are commonly being 

targeted in attacks.

Attackers are looking for the path of least 

resistance when looking to steal data. Threat 

actors commonly look for the easiest way into 

your networks to steal your data and then sell it 

or publicly leak it for reputational points on 

forums (Zoltan, 2022). APIs are increasingly 

becoming the target of attacks because they have

direct access to data and backend services. 

Commonly, organisations have poor visibility 

into how many APIs they have, how many are in

use and how many are just sitting on their 

infrastructure, deprecated and no longer in use 

(zombie API).

Allow readers with varying skills and experience

to understand the concepts shown throughout the

The methodology was designed to be useful for 

experienced testers and as an educational 



methodology. resource for those inexperienced wanting to 

learn API hacking.

Table 1: Core Research Objectives 

1.7    Scope of the Study

The following research scope is limited to API hacking, techniques, skills, tools and two particular 

APIs, RESTful and GraphQL. The research does not cover hacking or exploiting network service 

vulnerabilities (CISA, 2023) or web applications (OWASP, 2021), only APIs and their 

vulnerabilities (OWASP, 2023) and misconfigurations.

1.8    Limitations of the Study

Throughout our research project, we anticipate possible limitations to the study, such as lack of 

tooling that we can use specifically to test APIs due to a lack of tool development, lack of 

actionable literature that focuses on penetration testing APIs and exploiting vulnerabilities 

(Apisecurity, n.d), the sample size of vulnerable API virtual machines, we also anticipate that since 

the research project is academic and therefore will need to adhere to ethical agreements (see 

Appendix A), this means that practical testing can only be conducted in a virtualised environment 

and as such not all aspects of the API penetration testers methodology can be explored and 

practically demonstrated.

1.9    API Hacking Methodology Overview

In Figures 2, 3 and 4, we lay out the structure of the API penetration tester's methodology and show 

how each stage follows into the next. In the methodology, we focus on REST APIs as they are the 

most commonly used and implemented in most applications; however, we also cover GraphQL as 

its popularity is steadily increasing in adoption.



Figure 2: Information gathering process



Figure 3: Reconnaissance - Passive & Active 



Figure 4: Content Discovery, Vulnerability Scanning & API Analysis 

1.10    API Vulnerabilities – OWASP TOP TEN

There exists a list of the most common and critical vulnerabilities that APIs are commonly exposed 

to by the OWASP foundation (OWASP, 2023).

OWASP API TOP TEN Vulnerability

1 API1:2023 - Broken Object Level Authorization

2 API2:2023 - Broken Authentication

3 API3:2023 - Broken Object Property Level 

Authorization

4 API4:2023 - Unrestricted Resource 

Consumption

5 API5:2023 - Broken Function Level 

Authorization

6 API6:2023 - Unrestricted Access to Sensitive 



Business Flows

7 API7:2023 - Server Side Request Forgery

8 API8:2023 - Security Misconfiguration

9 API9:2023 - Improper Inventory Management

10 API10:2023 - Unsafe Consumption of APIs

Table 2: OWASP API TOP TEN Vulnerabilities (OWASP, 2023)

1.11    Conclusion

The following research dissertation project aims to fill the gap in API penetration testing by 

developing a methodology for penetration testing both REST and GraphQL APIs using various 

environments, tools and techniques. The methodology will primarily cover how to map your target's

attack surface, as it is the most essential stage of any penetration test. However, towards the end, we

will cover one main vulnerability class, showing the reader how to discover and exploit Broken 

Object Level Authorisation (BOLA) (OWASP, 2023).



2. Chapter 2 - Literature Review

2.1    Introduction

We seek to evaluate different sources of literature, respected and widely recognised cyber security 

blog articles and researchers, news outlets, and white papers from different cyber security 

companies and foundations that research API security, vulnerabilities, penetration testing and have 

done real-world penetration tests against organisations and businesses as apart of their research.

This literature review is made up of different thematic groups, these include:

Literature Themes Description

API security Focuses on the general security posture of APIs 

and their commonly attributed threats.

API vulnerabilities and exploitation It focuses on the key vulnerabilities that APIs 

are exposed to.

Data breaches (Keary, 2023) where APIs were 

exploited and used as the initial access vector

Real-world case studies (see Table 14) showcase

the threat APIs can expose to an organisation, 

highlighting the significant data breaches due to 

API vulnerability exploitation.

Penetration testing and ethical hacking Look at penetration testing from a general 

perspective, how it is used and what it can be 

used for and then focus on ensuring all testing is 

conducted ethically.

API development and secure coding practices It focuses on preventative measures to better 

secure APIs before they are deployed into a 

production environment to weed out low-

hanging fruit vulnerabilities commonly 

exploited to facilitate large-scale data breaches.

Table 3: Thematic groups of sourced literature

We need to understand API technology, how APIs work and how they transfer data such as format 

and protocol, which API architectures we will focus our research on (REST & GraphQL), how we 

will develop the methodology and know what to include, the tools, techniques, methods and skills 

required to adequately test API security, identifying the existing penetration testing methodologies 



(not specific to APIs), the existing tools, identify data breaches that were caused due to API 

exploitation and how the attack vectors were exploited and research how ethical hackers have 

discovered API vulnerabilities in the wild and ethically reported them to the vendor (Bug Bounty 

Responsible Disclosure Reports (see Appendix G)).

Table 4 outlines the research question, the rationale and the research hypothesis. 

Research Question How can API penetration testing be conducted effectively to improve API 

security and prevent future data breaches?

Rationale The focus of this research is to develop a thorough API security-specific 

penetration testing methodology to ensure the security of an API. 

Hypothesis Implementing an effective API penetration testing methodology will 

significantly enhance the security of APIs and reduce the risk of data breaches.

Table 4: Research Question, Rationale and Hypothesis 

Table 5 showcases the literature that has been sourced and their key research findings. Each piece of

literature is directly relevant to API security, vulnerabilities and research where the discovery and 

exploitation of APIs have shown what level of risk they pose, as seen in Alissa Knight's research 

(Knight, 2021), where she was able to exploit Broken Object Level Authorisation (BOLA) 

(OWASP, 2023) in APIs to transfer money in and out of accounts from banks and cryptocurrency 

exchanges.

Literature Sourced Thematic Groups Key Research Findings & Contributions

Hacking APIs: Breaking Web 

Application Programming Interfaces 

(Ball, 2022)

API Vulnerabilities and 

Exploitation

Hacking APIs walks an ethical hacker 

through setting up a lab, tools and 

resources (word lists) and then walks 

the reader through multiple common 

attack chains for APIs. It is the most up-

to-date regarding discussing and 

walking you through all the stages of an 

API-specific penetration test, 

showcasing tools, resources, tips and 

tricks throughout with a customised 

word list developed by the author, 

which we also use in our 

implementation (see Table 18). Books 



like Ball's exist for web applications, 

such as The Web Application Hacker's 

Handbook (Stuttard, et al. 2011); 

however, until the release of Hacking 

APIs, none have existed for APIs 

specifically except for some comparable

literature (see Table 6), and we are now 

seeing more being released.

Black Hat GraphQL: Attacking Next 

Generation APIs (Farhi, et al. 2023)

API Vulnerabilities and 

Exploitation

Black Hat GraphQL is a first of its kind 

where you have a book dedicated to 

hacking GraphQL APIs and covers all 

the main aspects of GraphQL 

enumeration and exploitation. A key 

contribution by the authors for our 

implementation in Chapter 4 is a nmap 

scripting engine (NSE) script for 

GraphQL introspection detection made 

by the book's authors. The authors also 

developed the damn vulnerable 

GraphQL Application used in our 

testing (see Table 18/Figure 12).

Bug Bounty Bootcamp: The Guide to 

Finding and Reporting Web 

Vulnerabilities (Li, 2021)

Penetration Testing and Ethical 

Hacking

Though this book primarily focuses on 

bug bounty programs and how to hack 

them, it also heavily focuses on web 

application hacking and penetration 

testing different aspects of web 

applications. Though we could apply 

some stages to API hacking, our focus 

here is on Chapter 24, which briefly 

touches on how to hack, where to look 

and some tools and techniques to use in 

hunting for and hacking API 

vulnerabilities. The main contribution of

this book to us was the mention and 



reference to the OWASP zaproxy add-

on to GraphQL endpoint introspection 

(see Table 18), which we demonstrate 

the use of in Figures 37-38.

SCORCHED EARTH: HACKING 

BANKS AND CRYPTOCURRENCY 

EXCHANGES THROUGH THEIR 

APIS (Knight, 2021)

API Vulnerabilities and 

Exploitation

SCORCHED EARTH is an excellent 

piece of literature and a significant 

contribution to our research project as it 

demonstrates the exploitation and 

severity of Broken Object Level 

Authorisation (BOLA) vulnerabilities 

(OWASP, 2023), which allowed the 

researcher (Knight, 2021) to transfer 

cryptocurrency coins and fiat currency 

out of bank accounts and wallets she did

not own, nor did she have authorisation 

or authentication to do so. The main 

takeaway for us was using an 

intercepting proxy, which was both 

Burpsuite and Postman (see Appendix 

E), which was used to discover the 

vulnerabilities within the requests and 

responses of the API she was testing. 

The research also found that the same 

developers reused their code (recycling 

of code) across various banks, allowing 

her to hack an additional 50 banks. 

Knight found broken authentication and 

authorisation vulnerabilities in every 

penetration testing engagement, 

highlighting the vulnerability's severity 

and the impact it can have on financial 

institutions.

A Guide to API Security (Cloudflare, 

2021)

API Security Cloudflare, a content delivery network 

provider, provides not only load 



balancing and server distribution to 

thwart distributed denial of service 

attacks (DDOS) and standard denial of 

service attacks (DOS) but also 

implements a web application firewall 

(WAF) to help thwart web application 

vulnerability exploitation by means of 

malicious payload injections. From 

2021 onwards, Cloudflare released their 

API shield, a WAF for APIs which 

seeks to protect against specific API 

attacks, as highlighted by their 

incorporation of logic-based 

vulnerabilities using OWASP top ten as 

a key source. The whitepaper also 

discusses real-world security incidents 

specific to APIs in the case of T-Mobile 

(Bicchierai, 2017), Facebook (Spring, 

2021) and Justdial (Kumar, 2019), 

which not only highlights the risk APIs 

pose due to large organisations suffering

from the vulnerabilities APIs can expose

but also helps us further develop our 

methodology as we can look for 

common attack vectors adopted by 

threat actors to exploit APIs in order to 

simulate a real-world attack.

OWASP API Top Ten 2023 (OWASP, 

2023)

API Security The OWASP top ten for APIs is a 

collection of the ten most common and 

critical vulnerabilities to which APIs are

exposed. They also have a top ten list of

web application vulnerabilities. A 

critique of the list is for web 

applications. The naming convention 



makes sense in categorising the 

vulnerability types; however, they 

renamed them for APIs even though the 

vulnerabilities mostly remain the same. 

An example of this is highlighted with 

Broken Object Level Authorisation 

(BOLA), which is Indirect Objection 

Reference (IDOR) for web applications.

It is the same vulnerability type with a 

different name. This could confuse and 

cause people to learn new naming 

conventions for the same vulnerability, 

increasing efforts in learning and 

conveying to clients with little return. 

However, the top ten highlights the ten 

most critical vulnerabilities for APIs and

is a great resource to use when wanting 

to know the general attack surface of 

APIs and what to look out for during a 

penetration test. No frameworks 

compare regarding API-specific 

vulnerabilities, but other vulnerability 

and attack frameworks exist, such as 

NIST and MITRE ATT&CK (see Table 

13).

API and Shift Left Security With RSA 

Conference Wrap (Futuriom, 2023)

API Development and Secure 

Coding Practices

The RSA report focuses on API security

risks and their increased prevalence by 

showcasing and providing remediation 

steps for BOLA, Injection attacks, 

Shadow IT and Zombie APIs 

(undocumented/forgotten about assets) 

and securing the API development 

process. The remediation advice for 

protecting against and preventing 



BOLA is to validate user permissions to 

access the resources of other users 

resources, implement unique resource 

identifiers (UUIDs) and implement 

correct authentication mechanisms. The 

paper also discusses the shift left 

mindset of integrating DevOps and 

SecOps into the development lifecycle 

to secure during their development 

before they are deployed into 

production environments. The paper 

also highlights API exploitation data 

breaches to emphasise and showcase the

real-world risk APIs can pose as they 

are used to power our digital world in 

providing third-party access to services 

such as AI.

OWASP API Security Top 10: Insights 

from the API Security Trenches (SALT, 

n.d)

API Security SALT security’s whitepaper, which 

focuses on the OWASP top ten for APIs 

(OWASP, 2023), not only provides an 

in-depth analysis of each vulnerability 

class and raises awareness by analysing 

the top ten list but also follows that up 

with practical, real-world examples of 

where those vulnerability types were 

found in enterprise applications in the 

wild and the consequences they had or 

could have had as ethical security 

researchers first discovered some of the 

incidents.

Understanding API Attacks: Why are 

they different and how can you stop 

them? (SALT, n.d)

API Security This paper highlights the need for API 

security, the growing prevalence of data 

breaches (Isbitski, 2021) as a direct 

result of vulnerability exploitation in 



APIs and the reinforcement of Gartner’s

prediction (Novikov, 2022) that by 

2022, the rate at which APIs will be 

exploited will surpass any other type of 

exploitation method facilitating large 

scale data breaches. The paper 

contributes a significant amount of 

detail and emphasis on the importance 

of shadow IT, as SALT finds that many 

organisations don’t have clear visibility 

into where and how many APIs they 

have or are even using. The paper also 

covers initial access vectors favoured by

cyber criminals when looking to exploit 

and exfiltrate data via the API.

API Security Best Practices (SALT, n.d) API Security API Best Practices for better securing 

APIs white paper covers insufficient 

logging of events, secure development 

life cycle for securing code during 

development to reduce vulnerabilities, 

securing not only the backend 

infrastructure but also the frontend 

(client-side) squashing logical-based 

vulnerabilities and client-side 

vulnerabilities such as cross-site 

scripting. The need and importance of 

security testing the API once deployed, 

data security protections, network level 

security and visibility, and 

documentation where the company 

might not know how many APIs they 

have (insufficient asset management) or 

how to use them. The paper highlights 

the most important steps that an 



organisation and their developers must 

consider to protect and maintain their 

API security posture.

How Shift-left Extremism is Harming 

Your API Security Strategy (SALT, n.d)

API Development and Secure 

Coding Practices

The paper discusses Shift-left 

Extremism, which implements security 

controls and revisions earlier in the 

development life cycle to find and 

remediate bugs within the code base and

final product before rolling out the 

product to the live production 

environment. The paper underscores the

need to shift left earlier in the 

development life-cycle of an API than 

what is normally required to discover 

vulnerabilities earlier in the 

development process. The paper 

emphasises that it is simply not enough 

to rely on automated vulnerability and 

fuzz scanning code and applications to 

discover potential threats in the design 

and function of an API and introduces 

specialised Application Security Testing

(AST).

Protecting APIs from Modern Security 

Risks (SALT, n.d)

API Security Securing APIs from modern security 

risks is a valuable contribution to the 

API security field. It offers a reason for 

prioritising the need to secure your APIs

as their prevalence and reliance increase

yearly, and more services rely on APIs 

to transfer data and requests. The paper 

identifies many challenges to securing 

APIs as each API is not standard, is 

custom to the business using it 

(parameters, endpoint structure and 



function) and not one API is the same as

another, which makes universal security

best practices hard to implement. The 

paper also advocates for a shift-left 

mindset of better securing the 

development lifecycle of the API 

instead of security being an afterthought

after development. It also emphasises 

the need for monitoring as many APIs 

are not included in proper security 

controls, including monitoring and 

logging API events to detect application

problems or potential attacks to thwart 

attackers probing and exploiting. 

Crucially, the paper highlights that by 

using web application firewalls, the 

organisation trying to defend itself is 

doing itself a disservice as it cannot 

detect logic-based exploits and thwart 

attacks that do not follow the typical 

standard payload injection workflow of 

standard exploit attempts.

Mapping the MITRE ATT&CK 

Framework to API Security (SALT, n.d)

Penetration Testing and Ethical 

Hacking

MITRE ATT&CK is a common 

framework for categorising and 

highlighting threat actors' tactics, 

techniques and procedures (TTPs) and 

the tools they employ to breach 

organisation networks, exfiltrate data, 

laterally move across a network and 

persist access. There does not yet exist a

framework for common TTPs for API 

threat actors and the common TTPS 

they use across various data breaches, 

specifically those who seek to exploit 



APIs to facilitate data exfiltration and 

account takeover attacks. The paper 

highlights this research gap and seeks to

employ the current ATT&CK 

framework to build a relationship 

between the framework and API 

security. The paper uses the OWASP top

ten list for APIs and takes critical 

vulnerabilities commonly exploited in 

the wild, such as BOLA, to achieve this.

The proposed framework by SALT is a 

valuable contribution to the field as it 

seeks to take OWASP's work, build an 

attack framework from it, and use real-

world examples of where the 

vulnerabilities have been previously 

exploited to build a TTP map. The 

benefit of this research is that it creates 

practical awareness for organisations to 

learn about common attack vectors to 

build proactive and preventative 

measures for defence.

API Security in Action (Madden, 2020) API Security Contrary to other API hacking literature,

Madden includes chapters for securing 

APIs in IoT devices, microservice and 

service-to-service APIs and secure 

developer code practices for API 

development. The book, unlike Cory 

Balls (Ball, 2022) and Aleks and Farhi 

(Farhi, et al. 2023), comes from a 

software developer perspective and 

builds upon the principles of the shift-

left mindset of securing the code base 

and thinking about the security of the 



application throughout the development 

lifecycle instead of at the end before and

during deployment.

The API Security Disconnect (Noname, 

2023)

API Security Authored by Noname Security, it 

focuses on the latest security trends in 

not only the common type of attacks 

that APIs face in the real world but also 

the current attitude from organisational 

leaders and security teams towards API 

security, with their respondents 

admitting that as data breaches increase 

due to API exploitation so does the 

awareness of the significant risk that 

APIs can pose to an organisation, its 

data and their customers.

Table 5: Key findings and contributions of sourced literature

Comparable literature Description

Understanding API Security (Richer, et al., 

2016)

The book highlights the increasing reliance and 

the significant role of APIs in our ever-

expanding digital world. The literature 

emphasises that the need for secure and stringent

security controls has never been greater in a 

world increasingly reliant on APIs.

API Security for Dummies (Freeman, 2020) Understanding API Security is a book that 

focuses not on penetration testing but on secure 

code practices and understanding APIs from 

architecture, documentation, and communication

protocols to legacy APIs. The literature takes the

shift-left perspective and DevOps in API 

security to ensure the security testing process is 

taking place throughout the development life 

cycle of the API in order to identify and resolve 

security issues before software deployment. The 

book covers the main aspects of API security, 



emphasises on not making security testing an 

afterthought as it commonly is and covers 

injection attacks, creating protection firewalls, 

monitoring and alerting on events, DevOps, 

cloud migration and understanding how APIs 

work. 

Salt Security Special Edition. API Security for 

Dummies (Isbitski, 2023)

Though this piece of literature is within the 

accepted date range for our literature sourcing 

(2020 - 2023), they use the older version (2019) 

of the OWASP API top ten list. So, it was 

excluded from our literature review as the 

current standard has been updated for 2023. 

However, they do an excellent job 

differentiating the differences between API and 

web application attacks, which is crucial, as 

highlighted by the USPS penetration test report 

(Inspector General, 2018) and subsequent data 

breach due to the lack of this awareness (Krebs, 

2018).

Table 6: Comparable literature to Table 5

2.2    Theoretical Foundations

Identifying and understanding the core concepts underpinning API security will be a fundamental 

building block for developing the API penetration testing methodology. We found that the following

foundations are of most relevance:

Concept Description Relevance

The Confidentiality, Integrity, 

and Availability Triad (CIA 

Triad) (Irwin, 2023)

The CIA triad represents the 

three most important objectives 

a penetration tester should 

consider throughout testing. 

The confidentiality and 

integrity of data on the systems 

they are testing, the availability 

The CIA's relevance to API 

security and penetration testing 

ensures the systems and 

applications being tested are not

damaged or made unavailable 

to not disturb the organisation's 

day-to-day operations and to 



of the data and the systems 

being tested against. A 

penetration test should consider

all three pillars and abide by 

them.

ensure compliance with data 

protection laws (see Table 15) 

and data integrity.

The Cyber Kill Chain 

(Lockheed Martin, n.d)

The Cyber Kill Chain is a 

process in which an offensive 

attacker takes from start to 

finish from performing 

reconnaissance, weaponisation, 

delivery, exploitation (initial 

access), installation 

(persistence), command and 

control (post-exploitation) and 

actions on objectives (data 

exfiltration).

The cyber kill chain lays out an 

attack plan from start to finish 

throughout an offensive 

operation that seeks to go 

unnoticed and to fully 

compromise a target, 

maintaining access for as long 

as possible. We will be thinking

about the kill chain to form the 

structure of our API hacking 

methodology.

Defense in Depth (Cloudflare, 

n.d)

The Defense in Depth is an idea

an organisation should take to 

harden their security posture 

further. This can include 

enabling multi-factor 

authentication on all network 

entry points (access control), a 

good password policy which is 

enforced, firewalls to thwart 

and alert on potential attacks, 

data loss prevention plan, 

network segmentation, least-

privilege access, behavioural 

analysis of files and employees 

(insider threat) and physical 

security controls (Cloudflare, 

n.d).

It is important to know how to 

test an application and how the 

target organisation might have 

implemented security measures 

to bypass or test the validity of 

the security controls 

implemented.

Shift-left (Futuriom, 2023) The Shift-left is a concept that Shift-left, though not relevant to



seeks to better secure the 

development life cycle of an 

API in the earliest possible 

stage of development to better 

identify security risks in the 

code base and final application 

before being deployed into the 

production environment.

penetration testing, is becoming

a common trend in security. The

earlier we can identify 

vulnerabilities, the sooner we 

can remediate and better secure 

the application from attacks. It 

is becoming an essential 

element of information security.

ISO/IEC 27001 (ISO, 2022) ISO 27001 is an international 

security management standard 

that guides an organisation 

through establishing, 

implementing and continually 

improving security best 

practices and controls (risk 

management).

Although not directly 

applicable to API security, 

ISO's security controls promote 

security training and awareness,

which can be used to improve 

API security. The standard can 

further improve security and 

awareness, especially in 

knowing and being aware of 

your APIs (asset management 

and inventory), giving you full 

visibility into how many APIs 

you have and knowing their 

differences.

Table 7: Theoretical Foundations

2.3    Literature Sourcing Process

To source valid, credible and respected literature published by credible authors, companies and 

researchers, we went through a process that included searching various databases (see Table 10), 

using keywords (see Table 9), watching YouTube videos that hosted webinars (Traceable, 2021) and

presentations (Bhatnagar, 2018) of cyber security professionals (APIsec University, 2022) whose 

focus was on API security (Bombal, 2022) and penetration testing (Bombal, 2022) and see what 

they recommend, the literature they authored (Ball, 2022), the researchers they recommend and 

books they might mention that are best for learning (Farhi et al., 2023). We sourced various white 

papers, books and bug bounty disclosure reports (see Appendix G).



2.3.1    Inclusion Criteria

2.3.1.1    Relevance to Topic

For our inclusion criteria, it is important that the literature we are sourcing is relevant to API 

security and penetration testing. This can be literature that talks about API security and also 

literature that talks about hacking APIs.

2.3.1.2    Time Frame

We also considered the time frame of the literature. For this, we set a date range between 2020 and 

2023. This ensures the literature sourced is relevant and up to date, as the concern with technical 

writings is that it can quickly become outdated and no longer relevant, especially when it comes to 

hacking, techniques, methods and tooling.

2.3.1.3    Type of Literature

We sourced literature from the OWASP Top Ten documentation (OWASP, 2023), books and white 

papers focusing on penetration testing APIs (see Table 5).

To learn about and source more literature, we start by looking at literature references, webcast 

recommendations, YouTube searches and bug-hunter researchers who focus their careers on hacking

APIs and providing educational content to those who wish to learn about API hacking.

Researcher Work

Alissa Knight (Knight, 2020) SCORCHED EARTH Whitepaper. [Blog] 

(Knight, 2021)

Cory Ball (Ball, 2022) Hacking APIs – Breaking Web Application 

Programming Interfaces. [Book] (Ball, 2022)

Katie Paxton-Fear (Paxton, n.d) A dedicated API security researcher and bug 

bounty hunter. [YouTube] (InsiderPhD, 2020)

OWASP API Top Ten project (OWASP, 2023) List of all the ten most common and critical 

API-specific vulnerabilities [Documentation] 

(OWASP, 2023)

Nick Aleks and Dolev Farhi (Farhi, et al. 2023) Authors of Black Hat GraphQL. [Book] (Farhi, 



et al. 2023)

David Sopas (Sopas, n.d) MindAPI is a collection of API hacking tools 

and resources. (Dsopas, n.d)

SALT Security (SALT, n.d) Author of the SALT API security white papers in

Table 5

Futuriom (Futuriom, 2023) Author of the shift-left security in the API 

security field paper.

Vicki li (Li, 2021) Author of bug bounty bootcamp – chapter 24.

Cloudflare (Cloudflare, 2021) Author of the release paper on best practices and

considerations for API security and the release 

of their API shield firewall.

Noname Security (Noname, 2023) Authors of the current trends white paper in API 

security released this year demonstrate the 

current trends and security attitudes of 

organisations towards APIs.

Table 8: API security researchers and their works

2.3.2    Exclusion Criteria

2.3.2.1    Irrelevance to API hacking

We decided that any literature not talking about API hacking would be excluded from our inclusion 

criteria. One book we sourced, Bug Bounty Bootcamp (Li, 2021), heavily focuses on bug bounty 

and web application hacking. However, the author dedicates one chapter (chapter 24 – API 

Hacking) to API hacking, so it was included as the insights from the source are valuable and 

relevant to our research.

2.3.2.2    Time frame

Any literature outside of the pre-defined date range discussed in our inclusion criteria was excluded 

as it may no longer be entirely relevant or working regarding tools, methods and techniques 

demonstrated.



2.3.2.3    Authorship and Contribution

The authors needed to have contributed significant research efforts to the field of API security with 

a focus on penetration testing. Otherwise, they were excluded.

2.3.3    Search Strategy

To search for our desired literature, we took the upside-down triangle method whereby you start 

very broadly just searching for keywords that are relevant to the topic that you are researching, and 

after this, take the sourced literature and start narrowing it down by reading the literature and 

deciding whether it fits into our inclusion and exclusion criteria. We used the keywords in Table 9 in

various databases (see Table 10) to discover literature relevant to our research topic.

The keywords chosen in Table 9 were chosen because we wanted to ensure we sourced API hacking

and vulnerability sources and not other types of APIs. The keywords ensure that the literature that 

returns is relevant to our overall research goals and objectives, as shown in Table 1.

Keywords

1 “API vulnerabilities”

2 “API Hacking”

3 “API Penetration Testing”

4 “GraphQL Security”

5 “API Security Controls”

6 “RESTful API Vulnerabilities”

7 “API Security Vulnerabilities”

8 “API Security Vulnerabilities”

Table 9: Keywords used in the process of literature sourcing

Where sources were not academic but still provided research about API hacking and vulnerability 

exploitation, we needed to ensure their credibility and validity. In the case of Alissa Knight, a non-

academically sourced white paper, we validated her expertise and research by viewing (TechOmaha,

2022) interviews (Bugcrowd, 2022) and webinars (NahamSec, 2022), her other research (Knight, 

2020) and her overall contributions to the field of hacking APIs (Knight, 2020). We took the same 

approach to other non-academic sources.



2.3.4    Databases

As part of our literature-searching strategy, we also considered using a variety of databases. 

However, we found that the most beneficial literature sourced was from industry expert 

recommendations in either interviews (Ramsbey, 2023) or webinars.

Database Resource

Eric https://eric.ed.gov

Scopus https://www.scopus.com/home.uri

IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp

Google Scholar https://scholar.google.com

The Internet Archive https://archive.org

Salt Security https://salt.security/resources

Table 10: Academic Literature Sourcing Databases

Although not an academic database, the Internet archive allowed us to discover literature that may 

no longer be available in the public domain.

2.4    Research Methodology in Cybersecurity

Our research is to create a penetration testing methodology for APIs focussing on GraphQL and 

Rest APIs, walking a security tester through all the steps of performing a penetration test against an 

API and ensuring thoroughness and robustness.

Research Methodology Objective Description

Understand API penetration testing. It is important to understand how to specifically 

penetration test API architectures and 

technology stacks as APIs require a different 

testing approach to the standard web application 

hacking approach of scanning and enumerating.

Identify API penetration testing tools and 

resources.

Identify different API penetration testing tools 

and resources specifically for API testing.

Develop an actionable API penetration testing 

methodology to protect organisations and 

customer data, defend against attackers and 

Develop an actionable, robust and thorough API 

penetration testing methodology to structure a 

penetration test for hacking APIs, specifically 

https://salt.security/resources
https://archive.org/
https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/home.uri
https://eric.ed.gov/


prevent the next big data breach. REST and GraphQL.

Analyse real-world data breaches caused by API

exploitation.

Identify real-world data breaches explicitly 

caused by exploiting and abusing API 

vulnerabilities and misconfigurations.

Read and understand the methodology of 

blackhat hackers, where they write in detail 

about the hack they performed.

By identifying the methodologies from black hat

criminal hackers, we can build a methodology 

that uses techniques taken from a cyber criminal 

perspective, which will aid in a more thorough 

and robust methodology.

Understand ethical hacking. We must ensure that our methodology aligns 

with the standards expected from ethical 

penetration testers, ensuring that no legal or 

ethical boundaries are crossed.

Identify common API vulnerabilities. Identify common and critical API vulnerabilities

to gain an initial idea of the type of threats that 

APIs are uniquely exposed to.

Table 11: Research Methodology Objectives

Our developed methodology should cover all of the most critical and most commonly discovered 

API vulnerabilities (OWASP, 2023), tools and techniques but also be produced in a way that mirrors

an attacker to think like one and then be able to identify weaknesses and patch them before 

exploitation.

Through a qualitative research approach, we aim to produce a robust methodology that is both 

actionable and deeply informed by real-world contexts and challenges to fit the needs of developers 

and security professionals.

When developing the methodology, we seek to understand better the tactics, techniques and 

procedures (TTPs) used by attackers. This way, the methodology can be structured similarly to how 

attackers would structure theirs. By doing this, we can cover more aspects of hacking an API, 

covering all of our bases and ensuring the security test is thorough and robust and we do not miss 

anything. This is all to confidently show our clients that we have thoroughly tested their APIs and 

can assure them they are at less risk of suffering from a data breach than before.



2.5    State of the Art in API Security

The current trends in the API security field are the increased risk of APIs being exploited to 

facilitate large-scale data theft, an increase in API security awareness within the industry, 

vulnerabilities commonly targeted in attacks (Noname, 2023), vulnerabilities that APIs can be 

exposed to (OWASP, 2023) and a rise in data breaches due to APIs being used as the primary attack 

vector (see Table 14).

It is reported that 78% of surveyed security professionals say that they have faced an API security-

related incident within the last 12 months, 72% say they have a full inventory of their APIs while 

only 40% know which APIs return sensitive data, 81% say that API security is becoming more of a 

concern and priority for security teams and 53% say that their developers are increasingly becoming

more aware and refactoring code to be more secure to defend from attacks (Noname, 2023) which 

also shows that the shift-left concept (Futuriom, 2023) is seeing adoption amongst developers.

2.6    Penetration Testing

Penetration testing refers to the security test of an application, service, code review (looking for 

CVE vulnerabilities and 0days), technology stack and environment to test the effectiveness and to 

evaluate the currently implemented security controls to validate that the client has sufficient 

protections, detection and mitigations and to test whether the controls could be bypassed. The main 

point of a penetration test is to try and exploit the target in a way that the client did not think was 

possible and to identify potential vulnerabilities that need remediation.

2.6.1    General Principles and Techniques

The penetration testing process (Cry0l1t3, n.d) consists of the pre-engagement, defined scope, how 

long the test will last, contact information, get out of jail free card (legal protection), and typically 

consists of information gathering, threat modelling, vulnerability and application analysis, proof of 

concept (POC) exploitation, post-exploitation (if agreed to), and finally taking all of your notes 

throughout the test and writing an actionable, easy to understand and reproducible report 

(UnderDefense, 2019), which will consist of an executive summary, background, overall security 

posture, risk profile, general findings from the test, recommendation summary (risk remediation 

advice). A typical penetration test report (though it may vary) consists of an Introduction, 

Information Gathering, Vulnerability assessment, a proof of concept and post-exploitation, the 

overall risk profile and exposure and finally, the report's conclusion (Weidman, 2014).



2.7    API Penetration Testing

API penetration testing, though similar, is different from web application hacking. For API hacking,

the tester will need knowledge and skills in basic web application testing as APIs are integrated into

the web application ecosystem; however, APIs are a different technology (structure and 

functionality) and can be integrated into web applications to provide a service or added 

functionality. It is critical to understand the technology stack, communication methods 

(HTTP/HTTPS) and responses (200, 400, 401, 403, 402, 500) used to not only identify where the 

API endpoints are located but also how you can test the API as APIs may not always have 

integrated front-end applications.

2.7.1    API Vulnerabilities

As part of our research on API security, we want to know the most prevalent and high-severity risks

that APIs are exposed to commonly in the wild. Knowing this information will help us in 

developing the API penetration testing methodology as we can not only teach the reader how to 

identify those vulnerabilities but also exploit them. By implementing this, we can better help 

developers become more aware of the risks that APIs can expose.

2.7.2    OWASP TOP TEN

For this, we reference the OWASP Top Ten for APIs (OWASP, 2023), where they showcase the ten 

most common and critical vulnerabilities for APIs (see Table 12). The document is targeted towards 

developers. However, the contributors to the document are made up of cyber security and bug 

bounty professionals who not only have experience with these vulnerabilities but also work to 

identify and exploit them in the context of a bug bounty program. We use the OWASP top ten for 

knowing what the most critical and common vulnerabilities are in regards to APIs to better identify 

and incorporate them in our testing and methodology but also be able to categorise their severity to 

our client.

OWASP API TOP TEN Vulnerability

1 API1:2023 - Broken Object Level Authorization

2 API2:2023 - Broken Authentication

3 API3:2023 - Broken Object Property Level 

Authorization

4 API4:2023 - Unrestricted Resource 



Consumption

5 API5:2023 - Broken Function Level 

Authorization

6 API6:2023 - Unrestricted Access to Sensitive 

Business Flows

7 API7:2023 - Server Side Request Forgery

8 API8:2023 - Security Misconfiguration

9 API9:2023 - Improper Inventory Management

10 API10:2023 - Unsafe Consumption of APIs

Table 12: OWASP API TOP TEN Vulnerabilities (OWASP, 2023)

2.7.3    Comparable Frameworks

Other than the OWASP top ten for APIs (OWASP, 2023) and web applications (OWASP, 2021), 

other frameworks contribute to showcasing common tactics, techniques and procedures of attackers 

and common vulnerabilities and exposures.

Framework Resource

MITRE ATT&CK https://attack.mitre.org

NIST https://nvd.nist.gov/vuln/detail/CVE-2017-0144

SANS https://www.sans.org/top25-software-errors

CVE https://cve.mitre.org

CISA https://www.cisa.gov/known-exploited-

vulnerabilities-catalog

Table 13: Comparable frameworks to the OWASP TOP TEN

2.7.4    Data Breaches via API Exploitation

To identify common attack vectors, tactics, techniques, and procedures of threat actors and also to 

see what and how threat actors seek to target in a hack, we sourced various data breaches that 

resulted from the exploitation of API vulnerabilities in organisational infrastructure to show not 

only the prevalence of the risks that come from insecure APIs but also the severity and the large 

scale theft of data that can occur from API data exploitation. This will also help us better develop 

https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://cve.mitre.org/
https://www.sans.org/top25-software-errors
https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://attack.mitre.org/


our penetration testing methodology, as our hypothesis states that implementing a methodology will

significantly stunt the increase in data breaches.

Breach via API exploitation Description

T-Mobile 37 Million accounts breached (Gatlan, 

2023)

Thirty-seven million customer records were 

exfiltrated out of the T-Mobile network by 

means of exploiting their API (Spring, 2018). 

The ‘how’ aspect of the breach remains unclear 

as T-Mobile has not publicly stated it; however, 

the leaked data included billing address, email, 

phone number, date of birth, T-Mobile account 

number and information (Gatlan, 2023). The 

data exfiltration started on November 25th and 

ended the following year on January 5th, 

demonstrating that organisations do not have 

proper asset management and little or no 

visibility into their API infrastructure.

Twitter - 200 million email addresses leaked 

(Abrams, 2023)

Twitter suffered a data breach via scraping their 

APIs for each user's public and private 

information, resulting in over two hundred 

million Twitter users' emails being leaked online

(Abrams, 2023). The attack happened as the 

attackers took already publicly breached email 

addresses and phone numbers and used them to 

enumerate further information (email addresses, 

names, screen names, follow counts, and 

account creation dates) from Twitter users to 

create complete profiles on individual users via 

Twitter's API. This meant that the only users 

affected were those who had already been 

breached in prior data leaks. The leaked 

information could help facilitate social 

engineering attacks on individuals as it could be 

used to convince telecommunication customers 

that the caller is a legitimate telco employee who



may seek to steal their information further.

T-Mobile - billing addresses, emails, phone 

numbers, birth dates and other personal data 

leaked (Keary, 2023)

This article effectively describes why API 

security should be an organisation's priority and 

be integrated into the organisation's security 

practices and policies. The article uses T-Mobile 

as an example, which has been famously 

breached repeatedly, year after year. The article 

emphasises the need to focus not only on web 

application and network security but also, 

because of the large adoption of cloud services, 

organisations should focus on API security, with 

the main reason being exposed API tokens and 

keys (Keary, 2023), responsible for the initial 

access vector.

Twitter - 5.4 Million user accounts breached 

(Keary, 2022)

Twitter suffered an API exploitation facilitated 

data breach of over 5.4 million user accounts 

due to a vulnerability in Twitter's API, which 

they patched in January of 2022 but did not 

provide details. The article explains why the 

focus on API security is a growing concern. 

APIs have direct backend access to databases, 

making them a valuable target for threat actors 

who seek to steal and leak large amounts of 

organisational data. The article also emphasises 

the negative effects of breaches where user 

passwords may not be included. However, 

information such as email addresses, phone 

numbers, and residential home addresses could 

facilitate sophisticated social engineering 

campaigns such as vishing, phishing and 

smishing.

T-Mobile - Leaky API supports sim swap attacks

(Gallagher, 2017)

In 2017, one of T-Mobile's APIs suffered a 

vulnerability categorised by the OWASP 

foundation as excessive data exposure (Broken 



Object Property Level Authorization) (OWASP, 

2023). In this instance, the API endpoint did not 

validate the user's permission to access the 

requested endpoint, which worked by entering 

someone's phone number and then returning all 

of the customer's information to the user who 

requested the endpoint. The information 

provided would be required to prove that you are

the required sim card holder, which would then 

go on to facilitate sim-swap attacks against T-

Mobile customers. A tutorial on performing this 

attack was also published on YouTube before 

being patched (Moim, 2017).

JustDial - Local Indian search engine finds 100 

Million user accounts exposed (Kumar, 2019)

JustDial, India's largest local search engine for 

local services (Hotel bookings, travel plans and 

restaurants, etc.), suffered from an API 

vulnerability (Broken Object Property Level 

Authorization) (OWASP, 2023), where an API 

endpoint leaked excessive information about 

registered users. The information that was made 

available included usernames, email, mobile 

number, address, gender, date of birth, photo and

occupation (Kumar, 2019). It is important to 

note that this did not result in a data breach. A 

researcher discovered the vulnerability, 

estimated to have existed since 2015. It is, 

however, unclear if threat actors have previously

exploited this flaw.

Coinbase - Critical Bug Bonuty report 

(Coinbase, 2022)

Another example of a company suffering from a 

critical API vulnerability that could have been 

used (theoretically) to steal more cryptocurrency

from the cryptocurrency exchange Coinbase 

than requested is the report of a missing logic 

validation check within the Coinbase platform 



(Coinbase, 2022). The incident came to light 

from an ethical bug bounty hunter who 

discovered the flaw and was not previously 

exploited by threat actors. This vulnerability, 

however, emphasises that APIs can not only be 

exploited for large-scale data exfiltration attacks 

and the fact that some of the most severe and 

critical vulnerability flaws lie in the logic of an 

application but also in the abuse of existing 

services where you can manipulate requested 

data to steal other people or the market's 

cryptocurrency potentially. The researcher was 

awarded two hundred and fifty thousand dollars 

for their findings, showing the potential for 

security companies specialising in API 

penetration testing. It could incentivise other 

security companies to shift or include API 

security penetration testing as part of their 

services.

Venmo - Payments scraped via API reveals 

customers spending history (Salmon, 2019)

Venmo suffered an API-specific vulnerability in 

its mobile application, which demonstrates the 

need to focus not only on APIs that you will 

interact with in the browser but also on your 

mobile device, as mobile applications make 

heavy use of APIs. In this instance, this was not 

an issue because it is a legitimate feature in 

Venmo and the way the application was meant to

be used by design being able to see the purchase 

history of other registered users; however, the 

researcher, in this case, was able to mass-scrape 

everybody's spending habits and aggregate this 

data into an extensive database and have the 

ability to visualise the data to view user 

spending history, habits and activity which 



revealed people who purchased illegal goods 

and services amongst other things. The author 

states that the data they could steal could be used

in smishing, phishing and vishing, amongst 

other social engineering cyber attacks.

Peloton - Leaky API exposed customer profile 

data regardless of privacy settings (Goodin, 

2021)

Pelaton suffered from a vulnerability that leaked 

extensive information about users, such as user 

and instructor IDs, gender, age, weight, whether 

the user trains at home or in a studio, 

membership plan, and statistics on their 

workouts (Goodin, 2021). It was reported that 

Pelaton was aware of this flaw but did not act on

it before the disclosure. The endpoint to retrieve 

this information did not require authentication, 

which enabled this information to be made 

available (Broken Authentication) (OWASP, 

2023).

USPS - 60 Million accounts breached (Krebs, 

2018)

The United States Postal Service (USPS) 

suffered a vulnerability that exposed up to sixty 

million accounts. The incident occurred due to 

an API vulnerability that went undiscovered a 

month prior by the USPS penetration testers, as 

documented in their penetration testing report 

(Inspector General, 2018). They failed to 

identify the vulnerability as the testers adopted a

web application hacking methodology and used 

it not only on the web applications but also on 

the API, emphasising the need for an API-

specific penetration testing methodology. There 

is no indication that a breach from third parties 

who stole the account information occurred.

LinkedIn - 700 Million accounts breached 

(Taylor, 2021)

Over seven hundred million accounts breached 

from LinkedIn are up for sale by threat actors on

online forums. The author claims to have spoken



directly to the threat actor responsible for the 

breach and said that it was due to exploiting 

LinkedIns API; however, no further technical 

details on the exploit and vulnerability were 

made.

Table 14: Data breaches facilitated via API exploitation

A commonality amongst all breaches is that each organisation's API  had authentication and 

authorisation issues, which allowed attackers to access data they were not authorised to access.

2.8    Interdisciplinary Considerations

As well as sourcing literature relevant to our main thematic groups (see Table 3), we can also 

consider literature from other disciplines directly relevant to our research. This includes laws and 

regulations (see Table 15) surrounding data protection, computer misuse and general data 

protection. These laws and regulations would be of significant consideration for penetration testers 

to know about and be aware of before engaging in a penetration test as ethics and legal concerns for

if something goes wrong, even by accident, can be severe. Without proper protection, an 

organisation could pursue legal action against the penetration tester, or the tester could cause 

significant harm to the organisation.

2.8.1    Legal

From a legal standpoint, penetration testers should know about and be aware of Table 15, where 

these laws and regulations are directly relevant to ethical penetration testers so that they know 

where the line is and know not to cross it if these critical laws and regulations are not adhered to 

financial damages, loss of revenue, reputational harm, and possible imprisonment for unethical and 

malicious acts (intentional or not) along with data protection penalties which can be significant as 

was seen in the British airways twenty million pound penalty (Newman, 2018) breach (ICO, 2020).

Laws and Regulations Relevance

Computer Misuse Act 1990 (Legislation, n.d) The Computer Misuse Act of 1990 ensures that 

unauthorised access to systems without prior 

consent is an illegal offence. This ensures that, 

as an ethical penetration tester, you have 

permission to conduct testing against authorised 



systems.

Data Protection Act 2018 (legislation, n.d) The Data Protection Act of 2018 ensures that 

victims of data breaches are made aware and 

that individuals know how their data is used. For

ethical hackers, this ensures that if we come 

across any personal and sensitive data during 

testing, whether credit cards, emails, phone 

numbers, home addresses or medical documents,

this will remain confidential and shall not be 

shared, stolen or distributed.

The Network and Information Systems 

Regulations 2018 (NIS)

The Network and Information Systems 

Regulations 2018 mandates that essential digital 

service providers correctly implement 

preventative measures to manage and identify 

risks in their networks and systems. As an 

ethical penetration tester, you may be tasked 

with testing these security controls, ensuring 

they perform properly, are fit for purpose and 

cannot be mitigated by malicious third parties.

Privacy and Electronic Communications 

Regulations (PECR)

Privacy and Electronic Communications 

Regulations ensure security compliance with 

electronic communications. This means that as 

penetration testers, when we send the final 

report full of misconfigurations, vulnerabilities 

and other security discoveries, how we send the 

document over is secure; we know who it is 

going to, and once it arrives, it will be stored and

process securely by the correct authorised 

parties.

Non-disclosure agreements (NDAs) (GOV UK, 

n.d)

A non-disclosure agreement is when you agree 

to not disclose any details of the penetration test 

in any form and agree not to share or distribute 

the final penetration test report with 

unauthorised third parties. The agreement is to 



prevent the distribution of information to 

unauthorised third parties, as the final document 

may contain currently unpatched vulnerabilities 

that could be used maliciously against the 

organisation.

Table 15: UK Laws and Regulations that ethical penetration testers need to be aware of and know

to protect themselves and their clients

2.8.2    Ethical Concerns

Staying within the law and good ethics is important when conducting a penetration test. This means 

that you agree not to share the details of the penetration test with others outside of the organisation 

and only conduct testing that has been pre-approved. This is because scanning and exploits may 

cause systems to crash while testing and possibly data to become corrupted.

Failure to comply or to commit unethical or purposefully malicious actions may result in legal 

action, financial penalties, reputational damage or imprisonment. While testing, some good ethical 

practices include, when exploiting injection attacks, only enumerate system information and not 

data such as database files. This can include exploiting sequel injection (SQLi) (only enumerate 

database table names but do not dump tables), command injection (enumerate hostname and general

system information such as version of the kernel) or remote code execution. When testing for 

authorisation issues, register two accounts that belong to you to test against and do not try to test 

against other legitimate users.

2.8.3    Business Implications

Possible negative and positive business implications that a penetration test can have for an 

organisation is the assurance that the systems that run the business and store the data are secure, in 

line with best practices, providing assurance and encouragement to potential business partner 

relations and investors. 

However, the negative implications could be accidental damage of systems from testing and loss of 

profits for any possible downtime. This could occur from sending too many requests during a scan, 

which may cause system disruption (DOS) or the attempt at vulnerability exploitation, which might 

corrupt data, impair system service reliability and functionality and may also cause downtime, 

which means loss of revenue and reputational damage for the company.



2.9    Identified Research Gaps

2.9.1    API Security

Cloudflare released a white paper (Cloudflare, 2021) not only discussing the increased usage of 

APIs, the threats they pose and how to secure your APIs better but also introducing their new 

product, which acts as a WAF for APIs in preventing malicious threats targeted towards APIs which 

is unique as there are not many security controls available in protecting and defending from API 

attacks. However, the white paper does not evaluate the shield against real-world threat cases. The 

document would benefit from citing statistics against how effective the shield is in the real world 

and at thwarting attacks. The literature under this theme also lacks tooling for API security testing. 

The OWASP foundation lists the top ten for web applications and provides tooling to discover these

vulnerabilities. They, however, do not make this effort for APIs.

2.9.2    Penetration Testing and Ethical Hacking

While literature such as Li's (Li, 2021) focuses on penetration testing methods, techniques and 

tools, it lacks an actual methodology for the reader to take away as a deliverable (we address this in 

our implementation) from the content and apply it in their penetration testing engagements. A cheat 

sheet of commands, resources and links to the tools used at the end would be a major advantage.

2.9.3    Data breaches

Table 14 showcases data breaches by means of exploiting API vulnerabilities to exfiltrate data to 

later sell on dark web markets. However, from most sources, an incident response report or general 

findings of the attacker's attack methodology from how they found the vulnerability and exploited it

and whether it was automated or not is lacking.

2.9.4    API Vulnerabilities and Exploitation

Knight's white paper, Scorched Earth (Knight, 2021), provides valuable insights into the state of 

API security in relation to financial services such as banks and cryptocurrency exchanges. Her 

white paper, however, lacks any discussion on how she ethically tested the FinTech APIs, such as 

using approved accounts to test against, using her own money or the banks and the process of 

penetration testing tool approval to ensure no system disturbances occurred during testing.

The paper focuses primarily on technical vulnerabilities such as BOLA (OWASP, 2023); however, 

the impact on end users if a blackhat hacker were to perform the same actions as the researchers and



the significant consequences this would have as Knight was able to transfer money out of other 

customer accounts into her own.

2.9.5    API Development and Secure Coding Practices

Futuriom (Futuriom, 2023) introduces the idea of shift-left security, which seeks to implement 

security testing and code review early on in the development life cycle instead of focusing on 

security testing after development and not treating security testing as an afterthought. However, 

Futuriom does not discuss how this may pose challenges to organisations when implementing shift-

left practices and how they can overcome potential challenges brought about through shift-left 

implementation. The challenges may be cultural within the organisation who may not be familiar 

with the idea of the process, skill gaps in performing code review and testing such as fuzzing and 

vulnerability scanning alongside manual code inspection and tooling, for example, are there any 

tools or frameworks that currently exist, do they require license keys and if so how much will that 

cost. It is one thing to suggest implementing a more refined security testing process but another to 

implement it across various organisations.

2.10    Relevance to Hypothesis

Our research hypothesis states that implementing an effective API penetration testing methodology 

will significantly enhance the security of APIs and reduce the risk of data breaches. The sourced 

body of literature (see Table 5) is directly relevant to our hypothesis as the literature's core themes 

are API security, API vulnerabilities and exploitation, data breaches where APIs were exploited and 

used as the initial access vector and source of data exfiltration (Gallagher, 2013), penetration testing

and ethical hacking and API development and secure coding practices (shift-left) (Futuriom, 2023). 

These core themes from the sourced literature support the development of our research project of 

developing an API penetration testing methodology as it provides us with knowledge and awareness

of the threats that APIs are exposed to, common and critical vulnerabilities specific to APIs 

(OWASP, 2023), the attack vectors exploited in the wild by threat actors to cause a data breach to 

large organisations and how the reliance and increased usage of APIs by organisations increases the 

attack surface and risk of excessive data exposure and potential data breaches as APIs need to have 

direct backend access to the database to fetch and receive data.



2.11    Critical Discussion

2.11.1    API Security

The OWASP top ten lists the most commonly discovered and severe critical vulnerabilities facing 

web applications (OWASP, 2021) and APIs (OWASP, 2023). However, if we analyse both of the top

tens, the number one most severe and common vulnerability is both A01:2021-Broken Access 

Control (IDOR) (OWASP, 2021) and API1:2023 - Broken Object Level Authorization (BOLA) 

(OWASP, 2023) though these vulnerability classes have two different names they are identical in 

their exploits. The decision to name the same vulnerability classes with different names, though 

they belong to different top ten lists, could confuse and create gaps in security controls due to a lack

of standardisation amongst vulnerabilities, not only amongst security professionals and developers 

but also for blue teams tasked with remediation who may be unfamiliar with each of the top ten 

lists.

2.11.2    Penetration Testing and Ethical Hacking

Mapping the MITRE ATT&CK Framework to API security (SALT, n.d) creates an attack 

framework common with exploiting APIs to facilitate data breaches. It is commendable as such a 

framework does not yet exist and would benefit threat intelligence and defenders. However, the 

white paper would benefit from identifying core tactic, techniques and procedures of common API 

breaches and attackers and their identified tooling, word lists discovered in log files and 

remediation and mitigation suggestions based on the findings.

2.11.3    Data breaches

Though it may not always be the journalist's fault, the lack of clarity and depth on the root causes of

the breaches, the attacker's methodology and process and the type of vulnerability exploited leave 

the reader wondering how the breach occurred. For reading the data breach sources (see Table 14), 

the advantage it has is learning from real-world attack vectors taken and exploited by malicious 

threat actors to build better defences and a more robust penetration testing methodology 

incorporating attacker techniques and attack vectors into the engagement. In Table 16, we identified

threat actor's write-ups. One of them (Cameron, 2012) is a post-digital forensic investigation into 

the Stratfor breach (Cameron, 2014), which serves as an in-depth second-hand account of what took

place from the initial access, malware used, persistence, post-exploitation, lateral movement and 

data exfiltration. This level of detail in API attack breaches would be an excellent way to learn from

past breaches and build better defences.



2.11.4    API Vulnerabilities and Exploitation

Banks and Cryptocurrency exchanges are critical institutions and businesses, not only because of 

their position in current society but because they secure individual's finances to keep them safe and 

centralised. A breach affecting these institutions and businesses could spell disaster for individuals 

and the institutions. Fiat currency in banks is insured; however, cryptocurrency is not and with both 

organisations relying on the use of APIs are highlighted in SCORCHED EARTH (Knight, 2021), 

the ability an attacker could have to manipulate and exfiltrate other individual's money is a severe 

and very real risk. Knight details her exploits using broken authentication and authorisation, finding

BOLA present amongst all APIs she tested.

2.11.5    API Development and Secure Coding Practices

The idea of shift-left in SALT security's white paper (SALT, n.d) and Futuriom (Futuriom, 2023) is 

a good idea in theory, where the idea and implementation of best security practices starting at the 

code base of the application through until and after deployment will reduce security related 

vulnerabilities and decrease the attack surface. However, the problem is in the implementation of 

the idea. Though there are careers in DevOps and DevSecOps, not all organisations can introduce 

the concept of shift-left into their organisation without redesigning their security teams, 

development processes, tools and work culture. The shift-left concept would require additional 

training and the potential cost of license fees of tooling to accomplish this. A skill gap is that not all 

programmers will have the skills to analyse code from a security perspective and identify 

vulnerabilities.

2.12    Conclusion

Reviewing the literature in Chapter 2, which focuses on API security, vulnerabilities and 

exploitation, data breaches, penetration testing, ethical hacking, API development, and secure 

coding practices, also serves as the literature's main themes. It is evident that while there is 

significant progress in tool development, resources and educational resources within the API 

security field, gaps remain, particularly in tool development and secure coding practices and 

techniques to test your APIs effectively. As different industries grow more reliant on the use of 

APIs, the risk will increase with the growth of the adoption and popularity.



3.    Chapter 3 – Research Methodology

3.1    Introduction

Our research methodology consists of using virtual and purposefully vulnerable API machines to 

develop and test our penetration testing methodology, not only to develop but also to test and justify

each stage of the methodology. We take what we learned during our literature review from the 

books, white papers and articles where we discovered API vulnerabilities, attack vectors, data 

breaches and methods and seek to integrate that into the methodology to emulate an attacker to 

prevent data breaches.

3.2    Background and Justification

As we covered in Chapter 2 (see Table 14), we have seen an increase over the past decade in API 

exploitation, resulting in data breaches resulting in the loss of customer information such as phone 

numbers, email addresses, IDs, passwords, and other personally identifiable information. These 

breaches have changed the way we think about data breaches. We previously thought of a data 

breach that exposed passwords, usernames and emails. Now, we are seeing more personally 

identifiable information (PII) being leaked that has been increasingly used to facilitate sim swap 

attacks (Gallagher, 2017).

To combat the increase in API-related data breaches, we strive to develop a robust and thorough 

penetration testing methodology to help penetration testers and developers discover API-specific 

vulnerabilities within their applications to identify misconfigurations and vulnerabilities before an 

adversary can. We have seen, as in the case of the USPS (Inspector General, 2018) breach (Krebs, 

2018), that penetration testers do not have the required knowledge or skills in testing an API, 

knowing where to look, how to look and what to look for. Our methodology seeks to prevent this 

through training and awareness.

3.3    Research Approach

We performed a mixed-method approach to our research. It encompasses quantitative and 

qualitative research based on existing web hacking literature produced by black hat hackers who 

breached different companies and wrote how they did it.

1 Phineas Fisher’s Hack Back DIY guides (3) (EnlaceHacktivista, n.d) and videos (Afri 



TechNet, 2016)

2 Guacamaya’s Breach of Pronico Nickel Mine (kolektiva, 2022)

3 Flexispy breach (EnlaceHacktivista, n.d)

4 Liberty Counsel Breach (EnlaceHacktivista, n.d)

5 Conti Ransomware Manual (Vxunderground, n.d)

6 Bassterlord Ransomware Manual v1 (Vxunderground, n.d) and v2 (Bassterlord, n.d)

Table 16: Black hat hacker writeups and playbooks (see Appendix B)

The (although not academic) sources are reliable as the hacks described were from sources which 

were either leaked from known threat groups (Conti Ransomware) who actively perform 

ransomware attacks and make the news headlines or, in the case of Phineas Fisher, the events that 

are described have been widely publicised (Porup, 2016) in the case of the hack against Gamma 

Group and The Hacking Team (Bicchierai, 2016).

We also sourced white hat security research produced by:

1 Nahamsec and Jason Haddix (NahamSec, 2023)

2 The OWASP Foundation (OWASP, 2023)

3 Jason Haddix, the developer of the Bug Bounty Hunters Methodology for web application 

security (HackerOne, 2022)

4 Alisa Knights hacking into Banks and Cryptocurrency exchanges via APIs, SCORCHED 

EARTH (Knight, 2021).

Table 17: White hat hacking methodologies

We did this because we wanted to see the tactics, techniques and procedures of cyber criminals and 

white hats, then correlate that with the already existing methodologies from the white hats and see if

we can merge and tailor that information specifically to penetration testing APIs to prevent API 

abuse and data breaches from known threats and techniques.

The body of literature that we were able to source was small (see Table 5); however, it is valuable as

the researchers who authored the literature are well-known and respected in the industry (see Table 

8), and their works focus on API security which is directly relevant to this research project.



3.4    Tool Selection

We will conduct our testing in a virtual environment when developing the API penetration testers 

methodology and to meet the agreement with the university ethics committee (see Appendix A). 

The purposefully vulnerable GraphQL and Rest APIs, network (see Chapter 4 - 4.2), and the 

attacker's machine will be virtualised. See Table 18 for all the tools we will utilise throughout the 

methodology.

Tools Description Resource

Zaproxy Zaproxy is an intercepting 

proxy with a built-in 

vulnerability scanner and web 

crawler.

https://www.zaproxy.org

Zaproxy GraphQL 

Introspection

Zaproxy add-on to enumerate 

GraphQL introspection schema.

https://www.zaproxy.org/blog/

2020-08-28-introducing-the-

graphql-add-on-for-zap

Burpsuite HTTP intercepting proxy with 

limited capabilities due to 

subscription (community).

https://portswigger.net/burp

Kiterunner Content discovery file and 

brute-force tool for APIs.

https://github.com/assetnote/

Kiterunner

GoBuster Standard directory brute-force 

tool.

https://github.com/OJ/GoBuster

Ffuf Web application fuzzer which is

very versatile and can be used 

for parameter and endpoint 

fuzzing.

https://github.com/ffuf/ffuf

Browser developer tools Firefox browser developer tools

has two useful features. The 

network tab to discover APIs 

are you casually use an 

application and the debugger to 

view beautified JavaScript files.

https://www.mozilla.org/en-

GB/firefox/developer

https://www.mozilla.org/en-GB/firefox/developer
https://www.mozilla.org/en-GB/firefox/developer
https://github.com/ffuf/ffuf
https://github.com/OJ/gobuster
https://github.com/assetnote/kiterunner
https://github.com/assetnote/kiterunner
https://portswigger.net/burp
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/


WayBackURLs Not demonstrated in this 

reserch project but a 

commandline tool to efficently 

search your target in the 

Internet archive.

https://github.com/

tomnomnom/waybackurls

Exploitdb – Searchsploit Exploit database search engine 

to cross-reference discovered 

technology stack compoents to 

discover exploits for your 

target. Searchsploit is a 

command line tool to interact 

with the exploit database and 

can be used with other tools for 

automatic exploit detection.

https://gitlab.com/exploit-

database/exploitdb

Nmap NSE for GraphQL Nmap scripting engine (NSE) 

script to detect and alert on 

GraphQL introspection enabled.

https://github.com/dolevf/

nmap-graphql-introspection-

nse.git

Wappalyzer Used to detect what technology 

stacks are running on your 

target applications.

https://www.wappalyzer.com

Nuclei A fully automated vulnerability 

scanner with API vulnerability 

scanning template support to 

detect API specific 

vulnerabilities and 

misconfigurations.

https://github.com/

projectdiscovery/nuclei

Nmap Versatile network mapper to 

detect open ports and running 

services.

https://nmap.org

Third-Party Services Description Resource

Built with Search engine to search your 

target domain to see what 

technology stack they have 

https://builtwith.com

https://builtwith.com/
https://nmap.org/
https://github.com/projectdiscovery/nuclei
https://github.com/projectdiscovery/nuclei
https://www.wappalyzer.com/
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://github.com/tomnomnom/waybackurls
https://github.com/tomnomnom/waybackurls


running on each of their 

domains.

Exploit-db Exploit database and search 

engine. Cross reference with 

your targets technology stack 

and their version numbers.

https://www.exploit-db.com

TheWayBackMachine The internet archive is used to 

look back at historical data and 

can be used to discover old API 

documentation to advance your 

reconnaissance.

https://archive.org

Swagger Editor If you discover API 

documentation that is not in the 

correct format but instead in 

raw text, you can format it 

correctly for clarity and better 

readability

https://editor.swagger.io

DNSdumpster DNS enumeration search 

engine to discover subdomains 

passively.

https://dnsdumpster.com

Machines Description Resource

Kali Linux The hacker's machine being 

Kali Linux makes it clear to the 

reader who the attacker and the 

API server are.

https://www.kali.org/get-kali

Ubuntu The API server hosts the 

purposefully vulnerable APIs.

https://ubuntu.com/download

Purposefully vulnerable API

applications

Description Resource

crAPI An OWASP project that 

incorporates REST APIs and is 

purposefully vulnerable to 

https://github.com/OWASP/

crAPI

https://github.com/OWASP/crAPI
https://github.com/OWASP/crAPI
https://ubuntu.com/download
https://www.kali.org/get-kali
https://dnsdumpster.com/
https://editor.swagger.io/
https://archive.org/
https://www.exploit-db.com/


perform ethical testing.

DVGA A dedicated GraphQL 

purposefully vulnerable virtual 

machine to conduct ethical 

testing.

https://github.com/dolevf/

Damn-Vulnerable-GraphQL-

Application

VAmPI A RESTful API which 

incorporates the OWASP API 

TOP TEN list for ethical 

testing.

https://github.com/erev0s/

VAmPI

Juice Shop E-commerce application which 

incorporates REST APIs and 

real world design and 

technology stack to perform 

CTF challeneges against and 

ethical testing.

https://github.com/juice-shop/

juice-shop

Pixi OWASP project that acts as a 

social media pllatform 

purposefully vulnerable and 

meant for ethical testing.

https://github.com/DevSlop/

Pixi

Word Lists Description Resource

Hacking-APIs A dedicated API word list to be 

used during content discovery.

https://github.com/hAPI-

hacker/Hacking-APIs

Seclists An accumilation of word lists 

and incoropates usernames, 

passwords and GraphQL 

specific word lists for content 

disocvery.

https://github.com/

danielmiessler/SecLists

Assetnote Kiterunner word lists API-specific word lists 

designed to be used with 

Kiterunner.

https://wordlists.assetnote.io

Table 18: Tools and resources used throughout Chapter 4

https://wordlists.assetnote.io/
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/DevSlop/Pixi
https://github.com/DevSlop/Pixi
https://github.com/juice-shop/juice-shop
https://github.com/juice-shop/juice-shop
https://github.com/erev0s/VAmPI
https://github.com/erev0s/VAmPI
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application


3.5    Ethical Considerations

We need to be able to take theoretical knowledge and implement it practically. This will not only 

show that the tactics, techniques and methods shown are valid but will also help visualise for the 

reader how to reproduce what is being described, making the learning process easier and more 

actionable.

As ethical penetration testers, we must ensure that our tests are authorised, scopes and definitions 

have been defined and communicated, and the tools have been approved. This is to ensure a 

reduction in risk to the stability of the client's infrastructure.

As in the case of this research project, we will be performing our testing in a completely isolated 

virtualised network using VirtualBox. The API server, the attacker's machine, and the virtual 

network will all be isolated. This ensures no indirect or direct disturbance to legitimate third-party 

services.

3.6    Virtualised Testing Environment

For both ethical and legal reasons, we cannot just attack any API that is owned by an organisation 

without consent and approval. As per our agreement with the university (UoC) ethics committee 

(see Appendix A) and to meet the agreements made for ethical best practices, we will be using 

purposefully vulnerable API machines (Both GraphQL and RESTful) to conduct our testing in a 

completely isolated environment using virtual machines inside of VirtualBox. Not only is the API in

a virtual machine but the tester machine as well to ensure that the testing network stays completely 

isolated.

Here, we set up two virtual machines using VirtualBox, one being the penetration testers machine 

and the other being the API server. Both machines will be put into an isolated network, which we 

will create, and have a dedicated amount of CPU cores, network, RAM and storage.



Figure 5: Penetration Testers Machine - Kali Linux 

Figure 6 shows that the Kali machine has 6GB RAM and six virtual CPU cores and is put onto the 

API_LAB virtual network (LAN), ensuring isolation.



Figure 6: Kali Linux virtual machine configuration settings

Figure 7: API Server - Ubuntu 

The Ubuntu API server machine has 5GB RAM and five virtual CPU cores and is also put onto the 

same virtual network (API_LAB).



Figure 8: API Server virtual machine configuration settings

3.7    The Importance of a Methodology

The goal is to validate that the client's API is secure, vulnerabilities have been found, and to take 

our notes (keep thorough notes and screenshots) and write an actionable report written in non-

technical and plain English to allow for a thorough understanding by the reader with a step by step 

guide for reproducing exploits to allow the security team to identify, understand and remediate the 

risk effectively.

3.7.1    Limitations of the Methodology

During our testing, there will be some limitations to the methodologies development and 

implementation due to ethical research restrictions. This involves not being able to perform the 

passive reconnaissance phase of the methodology as this requires third-party service use such as 

Google, Shodan, Censys, etc. This also involves tooling as with API security testing, and some tools

are specific to APIs; however, there are not a lot and the primary tool Postman (see Appendix E), 

which we want to use but cannot because it requires an active internet connection which is not 

possible inside of our isolated virtual environment.



3.8    Configuring The Testing Environment

We will use purposefully vulnerable API applications to demonstrate our methodology. See Table 

18 for a list of the vulnerable API machines we will use. We will use these applications to perform 

testing to demonstrate each phase of the methodology and the tools included.

3.8.1    Attackers Machine

We will use two virtual machines using VirtualBox, one being the attacker and the other being the 

victim machine. These machines will be set up on their dedicated networks and assigned IP 

addresses.

Command Description

vboxmanage dhcpserver add --

network=API_LAB --server-ip=10.38.1.1 --

lower-ip=10.38.1.110 --upper-ip=10.38.1.120 --

netmask=255.255.255.0 -enable 

The command used in a Linux terminal on the 

host machine creates the ‘API_LAB’ virtual 

network in VirtualBox. The commands are 

specific to VirtualBox.

Table 19: Creating the network (Wallwork, 2023)

3.9    Conclusion

Chapter 3 covers how we will conduct our research methodology, the considerations we will take, 

such as using virtual machine testing environments, possible limitations to the research, ethical 

considerations of the research, research approach and an overview of all the tools and services we 

will be using during our Chapter 4 implementation. We do this to validate our hypothesis and ensure

our research project and testing stay within the ethics committee's agreement (see Appendix A).



4.    Chapter 4 – Research Implementation

4.1    Introduction

For our implementation, we will develop a penetration testing methodology for performing 

information gathering, reconnaissance, content discovery, vulnerability scanning and API 

application analysis to map the attack surface of an API and test different types of vulnerabilities, 

namely logic-based authentication vulnerabilities such as BOLA.

4.2    Kali Linux - Tester

All testing will be performed within the Kali machine, whilst the API applications will be hosted on 

the Ubuntu server (see Figure 7).

Figure 9: Attackers machine setup (Kali)

4.2.1    Vulnerable API Machines

We will use Juice Shop, an e-commerce application that uses REST APIs; crAPI, a mechanics 

website with REST API integration, DVGA which is a Pastebin application made with GraphQL, 



VAmPI a headless API server utilising REST APIs and a social media application called Pixi which 

also uses REST APIs.

4.2.1.1    OWASP Juice Shop

Figure 10: JuiceShop server setup and running 



4.2.1.2    Completely Ridiculous API - OWASP crAPI

Figure 11: crAPI server setup and running 



4.2.1.3    Damn Vulnerable GraphQL Application – DVGA

Figure 12: DVGA server setup and running 



4.2.1.4    VAmPI

Figure 13: VAmPI setup and running



4.2.1.5    OWASP Pixi

Figure 14: Pixi setup and running



4.3    The API Penetration Testers Methodology

The following methodology follows a systematic approach to penetration testing APIs. It focuses 

primarily on RESTful but also incorporates GraphQL as they are the two most widely adopted and 

commonly used APIs today. We aim to be thorough and robust and to cover the core stages of an 

API-centric penetration test.



Figure 15: Methodology Overview

4.4    Information Gathering

Information gathering is an essential first step for approaching a target, as we will want to know 

some essential information initially about our target. We will want to identify what type of API our 

target uses, whether any documentation is available, how authentication has been implemented, 

what format the API transfers data in and whether the API implements rate limiting on requests. 

This will be helpful information for us as we perform our testing to refer back to if and when we 

may need to, and it will help us learn how the API works.

4.4.1    API Identification

Here, we focus on identifying what type of API is in use by our target by analysing endpoint 

structure, behaviour and response.

We will look at the request and response data, data transfer method (XML, JSON or YAML), 

content type (application/json, application/xml), HTTP allow methods, server information, security 

headers and API endpoint structure.

REST APIs typically transfer data in either JSON or plain text format, knowing this and the fact that

REST APIs use standard HTTP methods (GET, POST, PUT, DELETE) (Li, 2021) and HTTP status 

codes (200, 404, 401, 403, 405, 400) we can determine that Figure 17 is a RESTful API based on 

the response data from our request.

Method Endpoint Structure

GET /identity/api/v2/user/dashboard

GET /workshop/api/shop/products

POST /identity/api/v2/user/pictures

POST /community/api/v2/coupon/validate-coupon

Table 20: Common endpoint structure for RESTful APIs in crAPI



Figure 16: Request data from a REST API - crAPI  

Figure 17: Response data from a REST API - crAPI

To identify that the API is GraphQL, we can inspect the HTTP headers, HTTP allow methods (GET,

POST), body of response, and HTTP status codes (200 OK) by creating valid and malformed 



requests to the GraphQL  endpoint (/graphql) and then inspect the error messages then observe the 

HTTP responses to determine whether or not the API is GraphQL in Figure 18.

Method Endpoint Structure

GET /graphql

GET /graphiql

GET /v1/graphql

GET /v2/graphql

Table 21: GraphQL endpoint structure (Aleks and Farhi, 2023)

Figure 18: Request data from a GraphQL API - DVGA 



Figure 19: Response data from a GraphQL API - DVGA

4.4.2    API Documentation Review

API documentation made by the developer for the consumer can provide us with a wealth of 

information about how the API works, what and how it is meant to be used, different paths, 

endpoints, parameters, authentication requirements, example requests, changelog, headers and 

allowed HTTP methods can all be found in the APIs documentation. What is significant about API 

documentation is what it does not tell you. This can include unintended exposures, mismatches in 

behaviour and deprecated features. Documentation can be found either publicly with no 

authentication required or you will need to authenticate to be then able to locate the documentation.

Documentation paths

1 /docs

2 /apidocs

3 /developers/documentation

4 /api/documentation

5 /api-docs

6 docs.target.com

Table 22: Common API documentation web paths (Ball, 2022)



Figure 20: JuiceShop api-docs documentation discovered 

4.4.3    Authentication & Authorisation

As part of understanding how our client's API works, we will want to know how the API handles 

authentication, if at all, as some developers may not implement authentication (or properly) as they 

believe no one can find specific endpoints (security through obscurity) so they neglect basic 

authentication however assuming this is not the case we will want to know how the API handles 

authentication so that later when we are performing logic-based authentication tests we will know 

what type of authentication is in place to then try and bypass it.

Authentication Method

1 No authentication

2 Json web tokens (JWT)

3 API Keys

4 HTTP Authentication

5 HMAC



6 Oauth

7 Bearer token

Table 23: Common API authentication methods (Ball, 2022)

For information gathering, all we care about right now is identifying how the API handles 

authentication (can we authenticate?), so we will look to identify endpoints, security headers and 

tokens, see Figure 21.

Figure 21: Authentication request made with POST – crAPI



Figure 22: Authentication response from request (Bearer Token)  -  crAPI

It is important that whilst testing authentication, we also determine whether or not the API has 

proper authorisation setup. If a user can authenticate as user1 but can access the resources of user2, 

which they are not permitted to do, then this is improper authorisation control. We should consider 

how the API handles endpoint-based permissions and role-based access control. To do some cursory

testing, identify universally unique identifiers (UUIDs) (user=123) and change the values 

(user=124).

4.4.4    Tool Summary

Tool Link

Burpsuite https://portswigger.net/burp

Table 24: Tools used summary

4.5    Reconnaissance

Reconnaissance is one of the most important stages of any penetration test, as the larger the attack 

surface we can discover, the better chance we will have of discovering a vulnerability or 

https://portswigger.net/burp


misconfiguration somewhere in it. During the Reconnaissance process, we may stumble upon 

vulnerabilities without meaning to. It is good to either try to exploit as you move through and report

it immediately or note it down for later exploitation. Best practice dictates that we asses its severity 

and potential impact and report it immediately.

4.5.1    Passive

Passive reconnaissance involves gathering information about our target without direct interaction. 

This can be done through third-party services (see Table 18) that fetch information on our behalf. 

Techniques include Dorking using search queries to find specific data. Services that can identify our

target's web technology stack that's in use to search and then exploit databases will help identify 

vulnerabilities in our target's technology stack without direct scanning. Historical data, like older 

versions of a company's public API documentation, can be sourced from the Wayback machine. 

Internet scanning services enable passive port scanning, subdomain enumeration, web technology 

identification, and vulnerability assessments such as Shodan and Censys.

4.5.1.1    Dorking

Dorking is a technique which we can use to gather information about our target, their technology 

stacks, infrastructure, endpoints and parameters, exposed data, subdomains, leaked credentials, keys

and tokens (for authentication), file types, possible vulnerabilities, login portals, paths (/api/v1/) and

files. Dorking can work on a multitude of third-party services which gather data about your target.

We can use various third-party services (see Table 25) to search our target domain and discover 

different types of information.

Service Resource

Google https://www.google.com

Bing https://www.bing.com

DuckDuckGo https://duckduckgo.com

Shodan https://www.shodan.io

Censys https://search.censys.io

Github https://github.com/search

https://github.com/gwen001/github-subdomains

https://github.com/gwen001/github-endpoints

https://github.com/gwen001/github-regexp

https://github.com/gwen001/github-regexp
https://github.com/gwen001/github-endpoints
https://github.com/gwen001/github-subdomains
https://github.com/search
https://search.censys.io/
https://www.shodan.io/
https://duckduckgo.com/
https://www.bing.com/
https://www.google.com/


Google Hacking Database https://www.exploit-db.com/google-hacking-

database

Table 25: Third-party services that support dorking

However, for APIs, we will want to look for specific paths, parameters and files that could be useful

to us when building out a sitemap of our target. The idea here is to gather as much information as 

possible about our target without direct interaction.

Operators Operators Dork Description

site: ( ... ) site:target.com inurl:"/api/" Discovering API paths

inurl: & site:target.com inurl:/api/v1 OR 

inurl:/api/v2 OR inurl:/api/v3

Discovering different API 

versions

cache: - site:target.com site:api.*.* API Subdomain enumeration

intext: * site:target.com inurl:”/api/docs” Reveals swagger API 

documentation

intitle: “ … “ inurl:/graphql OR 

inurl:/graphiql

GraphQL API discovery

filetype: | site:*.target.com inurl:"?

api_key=" OR inurl:"?token=" 

Searching for common API 

parameters

https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database


Table 26: Example Google Dorks for API asset discovery

4.5.1.2    DNS Enumeration

Enumerating your targets domain name system (DNS) can provide us with insights into the target's 

infrastructure, revealing information such as web hosts, subdomains, MX, A, CNAME and TXT 

records, zone transfers, shadow IT/zombie APIs, third-party integration, DNS servers and host 

records. For APIs, we will focus on 'api.target.com' related subdomains and note them down to later

investigate and probe. To perform DNS enumeration passively, we can use various tools and 

resources, including HackerTarget's DNSdumpster project, see Figure 23.

The advantage here is discovering subdomains as we can use this method to discover developer, 

testing and staging environments where security might be more lackadaisical as the developer may 

assume that because the subdomains are not publicly listed, then they are secure (security through 

obscurity).

Figure 23: DNSdumpster search engine to perform passive DNS enumeration



4.5.1.3    Technology Identification

When we start to look at our target, we will want to identify the technology stacks our target is 

using. We will want to consider how the tech stack is integrated, how it is running, what version the 

software is currently running as and whether it is open source or proprietary. We will mainly focus 

on software type and version as this can be used later for identifying whether or not the target 

software is vulnerable and has a public exploit available (CVE).

We can use the BuiltWith search engine to enter the domain(s) of our target, and it will return the 

web technology stack that our target is using. The type of information it will provide is widgets, 

programming languages (PHP), frameworks, content delivery networks (CDNs), mobile support, 

content management systems (CMS) and plugins, JavaScript libraries and functions, social media 

links, document encoding type (UTF-8) and document standards.

Figure 24: Built With technology stack identifier search engine

4.5.1.4    Vulnerability Search

Once we know what software stacks are running, we will want to identify version numbers 

BuiltWith finds and cross-reference with a vulnerability and exploit database such as exploit-db (see

Figure 25). At this point, we will not try to run any exploits against the target. However, it just gives

us an idea of how the target manages software updates because if we suspect an old version is 

vulnerable and our target is running an out-of-date piece of software, then it's likely other software 

and APIs might be out of date as well.



Figure 25: Searching for the targets software and version to check if an exploit is available via

exploit-db

4.5.1.5    Discovering Historical Data

Discovering historical data can reveal paths, endpoints, parameters and usage examples of your 

target API where it is not documented currently in the newest version. This is important to note as 

the developer may not have removed old assets from the server, and therefore, discovering older 

documentation may reveal hidden assets still lurking.

We can use a tool for this called TheWayBackMachine or waybackurls (see Table 18), which will 

accept your target's domain as input, and then you can specify dates by how far back you wish to 

go. This can reveal older versions of the API documentation and may go as far back as the API's 

initial release, giving us a complete picture of all the past and present functionality, paths, files, 

endpoints, version numbers (/api/v1, /v2, /v3) and parameters. We can take this information and 

create a custom word list, which we can later use in a directory brute-force attack during our content

discovery phase.



Figure 26: Discovering historical data with TheWayBackMachine such as documentation

4.5.2    Active

Active reconnaissance is when we, as the tester, actively interact with our target to collect 

information directly. We can utilise active reconnaissance to probe deeper into our target to 

understand how their applications and APIs work, how they work together, how they have set up 

their infrastructure and mistakes the developer may have made. This could include leaving older 

API versions on the server instead of deprecating them, developer and test subdomains, deprecated 

parameters and endpoints that could be vulnerable and other common mistakes and oversights.

4.5.2.1    Port scanning

Port scanning our target(s) has many advantages to us as a security tester. First, we will want to 

know what ports are open (especially high and non-standard ports) and what services are running on

those ports (identify version numbers). For this, we will use nmap and the nmap scripting engine 

(NSE), which will help us port scan our target and perform basic enumeration.

Option Advantage

nmap -sC -sV -A 10.38.1.110 Scans the target for top 1000 TCP ports, uses 

default scripts from NSE (-sC), enumerates the 

service version (-sV) and uses the aggressive 



scan to detect possible operating system (OS) 

type (-A), version detection, traceroute and 

script scanning (Ball, 2022).

nmap -sV -p-  10.38.1.110 Scans the target for all ports from 1 through to 

65535, providing extensive prot scanning 

coverage. This allows us to discover high ports, 

but may take some time (Ball, 2022). We use -

sV to enumerate the version and –p– to detect all

ports.

nmap -sV –script=graphql-introspection 

10.38.1.110

Use the nmap scripting engine (NSE) to inspect 

GraphQL endpoints for introspection (see Table 

18), which will allow for extensive GraphQL 

recon (see Figure 30), assuming the developer 

left introspection enabled, which it should not be

in a production environment (Aleks and Farhi, 

2023).

Table 27: Nmap scanning API options

Figure 27: Command example for basic nmap system enumeration - crAPI

Figure 28: Enumerating via nmap running services and open ports  - crAPI



Figure 29: NSE  introspection enumeration using nmap - DVGA

Figure 30: Identifying GraphQL introspection - DVGA

Figure 31: Scanning all ports and enumerating their services - JuiceShop

4.5.2.2    Subdomain Enumeration

We will also perform subdomain enumeration. This will give us a clear picture of the target's attack 

surface. After we enumerate the target domain for their subdomain, we will want to look for 

interesting subdomains such as developer, testing, admin, backup, api and possible debugging 

consoles. Some administrators think that by not indexing some of their subdomains, they are hidden

and, as such, don't implement security (security through obscurity), and some subdomains might not

be protected behind a firewall or load balancer like the main website might be.

We can enumerate the target subdomains using passive techniques via third-party services, 

enumerating SSL/TLS (HTTPS) certificate data and subdomain brute-forcing.

Subdomain

1 api.target.com

2 dev-api.target.com

3 graphql.target.com



4 v1.api.target.com

5 auth.target.com

6 test-api.target.com

Table 28: Common API subdomains

Technique Description Tool

subfinder -d target.com  | grep 

"api"

Subfinder is a project discover 

tool designed to use third-party 

services and optional API keys 

to scour the internet and 

discover subdomains for your 

target. The tools employ both 

active and passive techniques to

perform subdomain 

enumeration. We can use 

arguments to output the 

subdomains and their 

corresponding IP address. This 

allows us to see in-range and 

out-of-range addresses.

Subfinder: 

https://github.com/projectdisco

very/subfinder

python sublist3r.py -d 

target.com

Sublist3r is a passive 

subdomain enumeration tool 

that accepts the domain of your 

target as input and uses various 

third-party services to scrape 

your target's subdomains. These

include google, yahoo, virus 

total, etc.

Sublist3r: 

https://github.com/aboul3la/Sub

list3r

amass enum -d target.com | 

grep api (Ball, 2022)

Enumerate your target domain 

and only output API-specific 

related subdomains.

Amass: 

https://github.com/owasp-

amass/amass

https://github.com/owasp-amass/amass
https://github.com/owasp-amass/amass
https://github.com/aboul3la/Sublist3r
https://github.com/aboul3la/Sublist3r
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder


crt.sh search bar GUI crt.sh allows you to find all 

related subdomains to your 

target domain by fingerprinting 

their SSL certificates.

Third-Party Service: 

https://crt.sh/?q=

site:”*.target.com”

site:”target.*”

We can use Google Dorks to 

enumerate the target 

subdomains and their top-level 

domain.

Third-Party Service: 

https://www.google.com

Table 29: Subdomain scanning techniques and tools

4.5.2.3    Walking The Application

Walking the application refers to proxying all our traffic through Burpsuite, clicking on everything 

the application offers, and understanding how the application and the API integration works. This 

involves clicking all the buttons, entering all data forms, registering a user, logging in, logging out, 

uploading, downloading and anything else the application offers that an anonymous and 

authenticated user can do. During this process, you will not do anything other than use the 

application as the developer intended. Here, we want to record all the requests made and filter the 

output for '/api' to identify API paths and endpoints.

Here, we use Firefox developer tools in our network tab and filter the requests by filtering for '/api' 

or '/graphql' in the search bar and also filter by 'XHR' to ensure we only see API-related traffic.

https://www.google.com/
https://crt.sh/?q


Figure 32: Identifying API endpoints with Firefox developer tools  - JuiceShop

Here, we use Burpsute to walk the application and record all incoming traffic, which we can sort 

through for API paths and endpoints and start inspecting how they work.

Figure 33: Identifying API endpoints with Burpsuite  - JuiceShop



Figure 34: Inspecting how the identified API endpoints work - JuiceShop

4.5.2.4    Web Crawling – Spidering

Like with walking the application, this time, we will be fully automating the process of using web 

spidering. This involves using a web crawler which will recursively follow all links and sublinks 

until it has crawled an entire application. After we have spidered the application, we will have a 

sitemap of the target (see Figure 36), and we can use this to once again filter for API endpoints and 

paths.



Figure 35: Spidering the web application to identify API endpoints  - JuiceShop



Figure 36: Zaproxy web spidering built the targets sitemap - JuiceShop

We use zaproxy (see Table 18) not only to crawl a web application to identify paths and endpoints, 

but zaproxy also has a GraphQL introspection add-on which allows for zaproxy to send queries to a 

GraphQL endpoint and perform introspection recon to map the structure of the GraphQL API. From

our initial nmap reconnaissance, we already know that our target has introspection enabled. 

Introspection will allow us to perform extensive reconnaissance on the schema, providing insights 

into the API's structure and available types and fields, queries and mutations. Effectively, it removes

all the guesswork for us.



Figure 37: Importing GraphQL schema URL endpoint into zaproxy - DVGA

Figure 38: GraphQL Introspection query generation - DVGA



Figure 39: Enumerating the GraphQL endpoint via Introspection in Zaproxy - DVGA

4.5.2.5    Technology Identification

As we did with passive reconnaissance, we are now going to perform active web technology stack 

identification, the goal here being to identify all the technology running on the server and possible 

version numbers, which we can later use to vulnerability scan and cross reference against CVE and 

exploit databases to potentially find a working exploit against our target, gain initial access and 

escalate our privileges.

We will use two tools, one being Wappalyzer and another called WhatWeb.



Figure 40: Web tech stack identification using Wappalyzer  - DVGA

Figure 41: Wappalyzer results – DVGA



Figure 42: Web tech stack identification using Wappalyzer  - JuiceShop

Figure 43: Wappalyzer results  - JuiceShop



Figure 44: Whatweb web tech stack identification  - JuiceShop

Figure 45: Whatweb web tech stack identification  - DVGA

4.5.2.6    Source Code Analysis – JavaScript

Javascript files can be a gold mine for penetration testers as they can contain different API paths 

that may not be publicly known, endpoints and API calls, libraries and frameworks, understanding 

client-side logic, information disclosure, discovering assets that are not linked anywhere else, 

hidden functionality and finding possible developer comments.

Juice Shop website has a hidden scoreboard that is not publicly listed anywhere on the website; 

however, if we start enumerating the JavaScript files in our browser developer tools and beautify 



the JavaScript code, we can look through the code and identify different paths, one being the 

juiceshop’s hidden scoreboard page ‘/scoreboard’.

Figure 46: Identifying paths and endpoints in JavaScript files  (main.js) - JuiceShop



Figure 47: Discloses unknown API paths in JavaScript code – crAPI 

4.5.3    Tool Summary

Tool Link

Nmap https://github.com/nmap/nmap

Burpsuite https://portswigger.net/burp

Zap https://www.zaproxy.org

Wappalyzer https://www.wappalyzer.com

Whatweb https://github.com/urbanadventurer/WhatWeb

Dev Tools (FireFox) https://www.mozilla.org/en-US/firefox/

developer

GraphQL Introspection script for nmap https://github.com/dolevf/nmap-graphql-

introspection-nse.git

Table 30: Tools used summary

4.6    Content Discovery

When testing an application and its APIs, we will want to discover content (Shah, 2021) that may 

exist but is not publicly accessible (unlinked content) to the user or known to the tester. This could 

include finding old parameters, endpoints, paths, files, backup files, older software versions, 

administration panels, directories and open indexing, configuration files and exposed services that 

have not implemented proper authentication.

https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://github.com/dolevf/nmap-graphql-introspection-nse.git
https://www.mozilla.org/en-US/firefox/developer
https://www.mozilla.org/en-US/firefox/developer
https://github.com/urbanadventurer/WhatWeb
https://www.wappalyzer.com/
https://www.zaproxy.org/
https://portswigger.net/burp
https://github.com/nmap/nmap


4.6.1    Subdomain Brute-Forcing

We have primarily used passive and active techniques to enumerate subdomains; however, we now 

want to brute-force our targets DNS to discover new subdomains and virtual hosts that might not 

have been found via passive techniques. Brute-forcing DNS will allow us to find newly registered 

subdomains. We will use GoBuster and a word list to brute-force against. 

GoBuster to brute-force DNS:

Description Command

GoBuster is used to brute-force

subdomains of your target 

using a word list of common 

subdomain names.

gobuster dns -d target.com -w 

/usr/share/wordlists/amass/subdomains.lst

Table 31: GoBuster subdomain brute-force

4.6.2    Directory Brute-Forcing

When we perform brute-forcing of any kind, it will be beneficial for us to use API-specific word 

lists to better narrow down and identify endpoints, files and directories. If we use standard web 

application word lists, we will be sending a lot of junk requests, knowing we probably won't get a 

response.

Figure 48:  Directory brute-forcing against Pixi using API specific word lists

Developers may no longer be using specific directories (deprecated) or have “hidden” directories 

that they think are “hidden” because they are unlinked. Using directory brute-forcing, we can 

attempt to uncover these assets and potentially discover configuration, developer and system files 

that contain credentials or secrets. We may also find directories with insufficient permissions. See 

below for example directories we might hope to find:



Directory Type

/api Where the API is hosted.

/v1 Specifies the API‘scurrent or previous version.

/login Login page.

/auth Authentication API endpoint.

/register Registration page for users.

/playground Integrated development environment in the 

browser on the API endpoint.

/console Developer debugger console.

/graphql Graphql endpoint. It may allow introspection 

queries.

/graphiql Graphql endpoint.

/backup Backup directory. May allow directory listing.

/swagger Swagger documentation.

/admin Admin login panel.

/token It may allow for refreshing, generating or 

revoking authentication tokens.

/.env Exposes database and server credentials.

Table 32: Common API directories to look for

Figure 49: Directory brute-forcing against DVGA 



Figure 50: Using Kiterunner to identify different API paths – Pixi  (Ball, 2022)

HTTP Method Path

GET http://10.38.1.110/api/<BRUTE-FORCE HERE>

GET http://10.38.1.110/api/v1/<BRUTE-FORCE HERE>

GET http://10.38.1.110/v1/<BRUTE-FORCE HERE>

GET http://10.38.1.110/<BRUTE-FORCE HERE>

Table 33: Brute-force paths to discover directories

4.6.2.1    File Brute-Forcing

Similar to directory brute-forcing, where we are looking for specific directories, here we are looking

for specific files that might interest us and API file extensions that we are looking to find with our 

brute-forcing are:

File Type

.json Common with Rest and GraphQL APIs

http://10.38.1.110/v1/
http://10.38.1.110/v1/
http://10.38.1.110/api/v1/
http://10.38.1.110/api/


.xml Common with SOAP APIs

.yaml Common with documentation and specification

.graphql Common with GraphQL APIs

Table 34: Common API file types

Some misconfigurations we might find are:

File Type

Developer files Files may have credentials and internal 

addresses to internal systems

Backups May contain full or partial critical backups of 

the system

Configuration files May contain system secrets such as keys and 

tokens

API endpoints Exposing the functionality of a API

API swagger files Might be a API documentation file

API specification files Defines the structure and expected behavior of 

the API

Table 35: Common misconfigurations and what to look for

An excellent tool for endpoint discovery is called Kiterunner (see Figure 50), designed specially to 

discover API endpoints and comes with a set of API word lists. Another tool we can use is GoBuster

(see Table 18), which is mainly a directory brute-forcer but can be used to discover endpoints and 

files. The power of these tools comes from the word lists you provide.

4.6.3    Endpoint Analysis

When performing endpoint analysis, we seek to find authentication requirements, analyse endpoint 

functionality, test how the endpoints were intended to be used, analyse endpoint responses, and 

discover excessive data exposure (emails, usernames, passwords, phone numbers, IDs, security 

status such as 2FA enabled or disabled), analysing verbose error reporting, and API technology 

specific misconfigurations due to poor implementation (Ball, 2022).

Here, we find in VAmPI a user endpoint where you can request a valid username on the API 

endpoint (/users/v1/admin) and see all of its information, such as the email address used to register 

the account. In the real world, this would be a breach of personal user information and could be 



weaponised on mass to gather all the site users information, resulting in a data breach for the target. 

We use ffuf and a username wordlist to enumerate the endpoint for all valid site user emails, and 

you can see by requesting their endpoints that their corresponding email addresses appear.

Figure 51: Enumerating a user endpoint, finding all site users and their corresponding email

addresses – VAmPI 

Figure 52:  Discovered endpoints allows us to enumerate the registered users email addresses -

VAmPI



Figure 53: Request made to commuity post – crAPI 

Figure 54: Excessive data exposure of user information (email) from public user posts - crAPI 



4.6.4    API Version Discovery

APIs can have common naming schemes for their version paths, such as ‘/api/v1’ or ‘/api/v2/’, etc. 

This indicates the current or previous version of the API in use by the developer. The bigger the 

number, the newer the version it is. We can enumerate the versions from 0 through to 10 to test how

many versions of the API exist and determine the latest and oldest versions of the API.

In newer versions of APIs, developers fix vulnerabilities and improve functionality. If we can 

discover older API versions on the server, we may discover old vulnerabilities still present, even if 

they were fixed in the newest version.

Figure 55: Manually enumerating version number, ‘/v1’ - VAmPI

Figure 56: Manually enumerating version number, ‘/v2’ - VAmPI

4.6.5    Parameter Fuzzing

Parameter fuzzing refers to identifying parameters on the target's API and fuzzing them to discover  

old or undocumented parameters. While doing this, we can also fuzz the endpoint after the 

parameter for common vulnerabilities, such as local file inclusion (LFI).

A common parameter and value endpoint is: '?id=123', where ‘id’ is the parameter and ‘=123’ is the 

value. We can fuzz ‘123’ using LFI payloads (/etc/passwd) and fuzz the ‘id’ for parameters.

Example fuzz (FUZZ being a placeholder for Description



parameters to be fuzzed)

ffuf -u "http://10.38.1.110:3000/api/v1/book/?

FUZZ=123" -w 

/usr/share/wordlists/seclists/Discovery/Web-

Content/burp-parameter-names.txt

Here, we fuzz the ‘id’ parameter to discover 

current, new and old parameters. We want to pay

special attention to old and deprecated 

parameters, which we can cross-reference 

against the API documentation and start testing 

for vulnerabilities such as local file inclusion 

(LFI), sequel injection (SQLi), remote file 

inclusion (RFI) and other vulnerabilities such as 

command injection.

ffuf -u "http://10.38.1.110:3000/api/v1/book/?

id=FUZZ" -w 

/usr/share/wordlists/seclists/Fuzzing/LFI/LFI-

Jhaddix.txt

After we fuzz the parameter, we start to fuzz the 

endpoint value. We can automate vulnerability 

testing by taking the different parameters we 

previously discovered and fuzz the endpoints 

using payloads (‘/etc/passwd’) on the endpoint 

to find vulnerabilities such as local file inclusion

(LFI), sequel injection (SQLi), remote file 

inclusion (RFI) and other vulnerabilities such as 

command injection.

Table 36: Parameter fuzzing using ffuf

4.6.6    Tool Summary

Tool Link

GoBuster https://github.com/OJ/GoBuster

Kiterunner https://github.com/assetnote/Kiterunner

API word lists https://github.com/hAPI-hacker/Hacking-APIs

Ffuf https://github.com/ffuf/ffuf

Seclists https://github.com/danielmiessler/SecLists

Table 37: Tools used summary

https://github.com/danielmiessler/SecLists
https://github.com/ffuf/ffuf
https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/assetnote/kiterunner
https://github.com/OJ/gobuster


4.7    Vulnerability and Misconfiguration Scanning – 

Automated

Vulnerability scanning is when we scan for common security issues (CVEs) on mass against a 

target(s) to check for low-hanging fruit vulnerabilities. This stage is important, but not to focus on 

or rely on, as scanners may return false positives or junk data. The benefit here is covering a lot of 

ground quickly (WAFs may block you).

Figure 57: Automated vulnerability scanning – Nuclei 

4.7.1    Tool Summary

Tool Link

Nuclei https://github.com/projectdiscovery/nuclei

Table 38: Tools used summary

https://github.com/projectdiscovery/nuclei


4.8    API Analysis

API Analysis involves testing the functionality and behaviour of the API to identify potential 

vulnerabilities. Here, we seek to analyse how the API is intended to work and see if we can discover

vulnerabilities within.

4.8.1    Broken Object Level Authorisation - BOLA

A Broken Object Level Authorisation (BOLA) vulnerability (OWASP, 2023) typically exists when a

user authenticates, and due to improper authorisation of the authenticated user, BOLA allows user A

to access user B's data without authorisation.

To find and exploit BOLA, we will register two accounts, identify the user IDs (or objects) and then

swap the resource ID from user A to user B. If we can access their data from our account, this is a 

sign of a BOLA vulnerability. To adhere to best ethical practices, we will register and use two 

accounts belonging to us, Mechanic and Hackerman.

Figure 58: Walking the application with Burp saving request and responses

After walking the application, we have identified a possible endpoint:

Endpoint Description

/community/api/v2/community/posts/

T4PNUPvKjnWoBDT3wNqZQd

This endpoint in the crAPI application identifies 

different user posts with a user ID, and when we 

make a request to this endpoint, we can see the 

username and the registered email of the user. 

The string as the endpoint is random; however, 

upon response inspection, we can see this is a 

user ID of the original poster. See Figure 59.



Table 39: Identified Broken Object Level Authorisation (BOLA) endpoint

Figure 59: Identying endpoint in Burpsuite HTTP history after walking the application - crAPI

Figure 60: HTTP GET Request made to the API endpoint - crAPI



Figure 61: Response data of user information from endpoint - crAPI

However, whilst using the crAPI application, there is no way to discover other users information.



Figure 62: Using the application as intended to learn how it works - crAPI

Here, we registered a user, ‘hackerman’, had the application send us an email, as seen in Figure 63, 

and entered our car details into the “Add a Vehicle” tab.

Figure 63: Using emailed information and entering it into the application 

Upon entering the information (unique to us), we are presented with our personal vehicle page. It is 

important to note that only the user ‘hackerman’ is supposed to be authorised to see this page.



Figure 64: Personal vehicle page  of the Hackerman account

We will repeat this process for the mechanic user and then look for a resource identifier in the 

'Vehicle Details' page and try to access the mechanic's information from the Hackerman account.

Here, we identified a resource identifier on the vehicle page, and we can see that this resource ID 

identifies the car's real-world location using latitude and longitude coordinates (not something you 

would want another user to be able to see).

User Endpoint Resource ID

Hackerman http://127.0.0.1:8888/identity/api/v2/vehicle/

a3c7cf58-2140-4c1a-93bf-ca05d63eb795 

a3c7cf58-2140-4c1a-93bf-

ca05d63eb795 

Mechanic http://127.0.0.1:8888/identity/api/v2/vehicle/

33ec3a93-9ff0-4d0f-9d43-9a60073f1d06

33ec3a93-9ff0-4d0f-9d43-

9a60073f1d06

Table 40: Identified endpoint to test for BOLA

Now that we have identified this endpoint  and ID, we will change the endpoint of '/vehicle' to the 

mechanic's ID, and if we can see their data from the hackman's account, then this would be BOLA 

exploitation.

http://127.0.0.1:8888/identity/api/v2/vehicle/33ec3a93-9ff0-4d0f-9d43-9a60073f1d06/location
http://127.0.0.1:8888/identity/api/v2/vehicle/33ec3a93-9ff0-4d0f-9d43-9a60073f1d06/location
http://127.0.0.1:8888/identity/api/v2/vehicle/a3c7cf58-2140-4c1a-93bf-ca05d63eb795
http://127.0.0.1:8888/identity/api/v2/vehicle/a3c7cf58-2140-4c1a-93bf-ca05d63eb795


Figure 65: Proof of concept of finding and exploiting BOLA to access another users data

Here, we can see the other user’s account information without being authorised as that user.

Alternative tool Alternative to Link

Jaeles Nuclei https://github.com/jaeles-

project/jaeles

RustScan Nmap https://github.com/RustScan/

RustScan

Feroxbuster Ffuf https://github.com/epi052/

feroxbuster

Postman Burpsuite https://www.postman.com

Shuffledns Subfinder https://github.com/

projectdiscovery/shuffledns

GraphW00f Nmap NSE GraphQL https://github.com/dolevf/

https://github.com/dolevf/graphw00f
https://github.com/projectdiscovery/shuffledns
https://github.com/projectdiscovery/shuffledns
https://www.postman.com/
https://github.com/epi052/feroxbuster
https://github.com/epi052/feroxbuster
https://github.com/RustScan/RustScan
https://github.com/RustScan/RustScan
https://github.com/jaeles-project/jaeles
https://github.com/jaeles-project/jaeles


Introspection script graphw00f

Ghauri Sqlmap https://github.com/r0oth3x49/

ghauri

PayloadsAllTheThings Manual payload testing https://github.com/

swisskyrepo/

PayloadsAllTheThings

Searchsploit Exploit-db search engine 

website

https://www.kali.org/tools/

exploitdb/#searchsploit

Katana Web crawler – ZAP https://github.com/

projectdiscovery/katana

Whatruns Wappalyzer https://www.whatruns.com

Arjun GoBuster https://github.com/s0md3v/

Arjun

Table 41: API Hacking Tool alternatives to what has been used

Skill Type Skill 

BOLA To discover BOLA vulnerabilities, seek to identify resource 

identifiers or objects primarily as the authenticated user using 

two accounts, both registered by you, to stay within ethical 

bounds and simply swap the user account ID between the 

accounts until you can access the other user's data. If you can 

access the other user accounts data or functionality only meant 

for that specific user, this could possibly be a BOLA 

vulnerability.

GraphQL Introspection If your target has forgotten to turn off GraphQL introspection 

on their ‘/graphql’ endpoint, then you can enumerate it to build 

an entire GraphQL schema of your target, allowing for deep and

extensive recon, removing all the guess work needed.

Tool:

https://github.com/swisskyrepo/GraphQLmap

SQLi To quickly scan your target's endpoints and parameters for SQL 

https://github.com/swisskyrepo/GraphQLmap
https://github.com/s0md3v/Arjun
https://github.com/s0md3v/Arjun
https://www.whatruns.com/
https://github.com/projectdiscovery/katana
https://github.com/projectdiscovery/katana
https://www.kali.org/tools/exploitdb/#searchsploit
https://www.kali.org/tools/exploitdb/#searchsploit
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/r0oth3x49/ghauri
https://github.com/r0oth3x49/ghauri
https://github.com/dolevf/graphw00f
https://github.com/dolevf/graphw00f


injection vulnerabilities, web crawl your target, save the output 

to a file and then run that through sqlmap.

sqlmap -m endpoints.txt –batch –answer=”redirect=N” 

(Enlacehacktivista, n.d) (see Table 41)

Dorking Use Google dorks to perform subdomain enumeration and 

discover assets, version numbers, documentation, paths and 

endpoints.

Use GitHub dorking to discover for your target to see if the 

developers made any mistakes or third parties who have worked

for your target before, such as exposing API keys, tokens or 

private code repositories.

Nmap nmap -sC -sV --script vuln 10.38.1.110

Directory Brute-force Use directory brute-forcing tools and word lists to uncover 

misconfigurations and exposed assets.

Tools such as GoBuster and word lists can be used to discover 

exposed assets and uncover misconfigurations such as exposed 

backups, configuration files, and developer files that may 

contain juicy details such as usernames and passwords to 

remote systems.

Tool:

https://github.com/sullo/nikto

/robots.txt Checking for and opening the targets ‘/robots.txt’ file can show 

you sensitive locations only meant for admins and developers, 

such as debugger consoles, admin panels and different paths 

and endpoints the target doesn’t want anyone going to or 

knowing about, specifically web crawlers.

Source code analysis - Javascript Analyse javascript source code files to uncover hidden 

functionality, paths and endpoints, URLs, hardcoded secrets, 

API calls, misconfigurations, application logic, developer 

https://github.com/sullo/nikto


comments and possible vulnerabilities such as cross-site 

scripting (XSS).

Tool:

https://github.com/xnl-h4ck3r/xnLinkFinder

Historical Data Uncover historical data using waybackurls via the 

waybackmachine to discover older API documentation to aid in 

your recon.

Tool:

https://github.com/tomnomnom/waybackurls

Parameter Fuzzing Use parameter fuzzing to discover new (undocumented) 

parameters and test them for local file inclusion vulnerability 

using ‘/etc/passwd/ proof of concept. Other parameter based 

vulnerabilities can also be tested, such as sequel injection 

(SQLi), server-side request forgery (SSRF), cross-site scripting 

(XSS), etc.

Tool:

ffuf -u "http://10.38.1.110:3000/api/v1/book/FUZZ?=123" -w 

/usr/share/wordlists/seclists/Discovery/Web-Content/burp-

parameter-names.txt

Uncovering old versions Developers may leave (‘/v1’, ‘/v2’, ‘/3’, ‘/4’) API versions 

running on their infrastructure, allowing us to find older 

vulnerabilities on a target still present.

HTTP request methods.

GET, PUT, POST, DELETE 

(Mozilla, n.d)

If the API expects a GET request to a specific endpoint, 

however, you instead send a POST, PUT or DELETE request, it

may not expect to receive anything other than what it is 

expecting. It may allow you to manipulate the API to perform 

actions it otherwise wouldn't perform.

Table 42: API Methodology Hacking Tips and Tricks take away

Tool Commands used Link

http://10.38.1.110:3000/api/v1/book/FUZZ?=123
https://github.com/tomnomnom/waybackurls
https://github.com/xnl-h4ck3r/xnLinkFinder


nmap nmap -sC -sV -A 10.38.1.110 https://github.com/nmap/nmap

nmap nmap -sV -p-  10.38.1.110 https://github.com/nmap/nmap

subfinder nmap -sV –script=graphql-introspection 

10.38.1.110

https://github.com/

projectdiscovery/subfinder

subfinder subfinder -d target.com  | grep "api" https://github.com/

projectdiscovery/subfinder

sublist3r python3 sublist3r.py -d target.com https://github.com/aboul3la/

Sublist3r

amass amass enum -d target.com | grep api (Ball, 

2022)

https://github.com/owasp-amass/

amass

whatweb whatweb -a 3 http://10.38.1.110:5013 https://morningstarsecurity.com/

research/whatweb

gobuster gobuster dns -d target.com -w 

/usr/share/wordlists/amass/subdomains.lst

https://github.com/OJ/gobuster

gobuster gobuster dir -u http://10.38.1.110:8000/ -w 

/usr/share/wordlists/Hacking-APIs/Wordlists/a

pi_superlist --exclude-length 1179

https://github.com/OJ/gobuster

kiterunner (kr) kr scan http://10.38.1.110:8000/ -w 

/usr/share/wordlists/routes-large.kite

https://github.com/assetnote/

kiterunner

ffuf ffuf -u http://10.38.1.110/users/v1/FUZZ -w 

/usr/share/wordlists/seclists/Usernames/xato-

net-10-million-usernames.txt -mc 200

https://github.com/ffuf/ffuf

ffuf ffuf -u "http://10.38.1.110:3000/api/v1/book/?

FUZZ=123" -w 

/usr/share/wordlists/seclists/Discovery/Web-

Content/burp-parameter-names.txt

https://github.com/ffuf/ffuf

ffuf ffuf -u "http://10.38.1.110:3000/api/v1/book/?

id  =  FUZZ  " -w 

/usr/share/wordlists/seclists/Fuzzing/LFI/LFI-

https://github.com/ffuf/ffuf

https://github.com/ffuf/ffuf
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
http://10.38.1.110:3000/api/v1/book/?id=FUZZ
https://github.com/ffuf/ffuf
http://10.38.1.110:3000/api/v1/book/?FUZZ=123
http://10.38.1.110:3000/api/v1/book/?FUZZ=123
https://github.com/ffuf/ffuf
http://10.38.1.110/users/v1/FUZZ
https://github.com/assetnote/kiterunner
https://github.com/assetnote/kiterunner
http://10.38.1.110:8000/
https://github.com/OJ/gobuster
http://10.38.1.110:8000/
https://github.com/OJ/gobuster
https://morningstarsecurity.com/research/whatweb
https://morningstarsecurity.com/research/whatweb
http://10.38.1.110:5013/
https://github.com/owasp-amass/amass
https://github.com/owasp-amass/amass
https://github.com/aboul3la/Sublist3r
https://github.com/aboul3la/Sublist3r
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder
https://github.com/nmap/nmap
https://github.com/nmap/nmap


Jhaddix.txt

nuclei nuclei -u 10.38.1.110:3000 https://github.com/

projectdiscovery/nuclei

Table 43: Summary of commands used in the methodology

https://github.com/projectdiscovery/nuclei
https://github.com/projectdiscovery/nuclei


5.    Chapter 5 -  Testing

5.1    Introduction

Chapter 5 aims to evaluate the methodology's effectiveness developed in Chapter 4, how well it 

works in practice, identify its strengths once practically applied in a penetration test and assess its 

limitations and possible improvements.

5.2    Testing Environment Setup

The testing environment which we will use to practically implement the API penetration testers 

methodology will be the VAmPI virtual machine (see Figure 66).



Figure 66: VAmPI setup and running 

5.3    Application of the API Penetration Testers Methodology

Here, we will apply the API penetration testers methodology by conducting a penetration test 

against VAmPI. This will demonstrate and test the effectiveness of the developed methodology and 



ensure its practical applicability. By implementing it, we showcase a methodology crafted for 

penetration testers to conduct penetration tests specifically for APIs and validate its functionality. 

Through this hands-on approach, we can identify weaknesses and opportunities for refinement to 

further enhance the methodology in the future.

5.3.1    Information Gathering

The first stage of our test will be to perform information gathering. This stage aims to collect as 

much information as possible to better understand what type, version and architecture the API is to 

better prepare for the later stages. This involves API identification, reviewing available API 

documentation and seeing how the API handles authentication.

5.3.1.1    API Identification

To identify the API, we will look at the API's structure, analyse the response data that the API sends 

and identify how the API transfers data and in what format.

Figure 67: Example request  -  VAmPI



Figure 68: Example REST API response - VAmPI

From making a simple request and analysing response headers we can determine that the API that's 

currently in use by the application server is a RESTful API (JSON). We can also see the endpoint 

structure which is typical of RESTful APIs.

5.3.1.2    Documentation Review

In the case of VAmPI, the documentation can be found on its GitHub page; however, by putting the 

API specification file into the Swagger editor, we can visualise the documentation properly. It is 

important to note a light file brute-force identifies the location of the specification file on the server 

(http://10.38.1.110:5000/openapi.json).

http://10.38.1.110:5000/openapi.json


Figure 69: Building VAmPI API Documentation (see Table 18)

From the documentation, we now have a better idea of how the API is supposed to work and what 

HTTP methods it will accept at which endpoints. We can see various endpoints, parameters and 

values. This can help us better understand the function and behaviour of the target API.

5.3.1.3    Authentication Analysis

VAmPI uses token-based authentication to register, login and authenticate as a user. After finding 

and reading the API documentation, it is clear that we are going to have to make a post request 

using content-type/json with the fields it requires in its error reporting. VAmPI requires email, 

username and password fields and content type of JSON to register an account.



Figure 70: Registering an account  -  VAmPI

Figure 71: Account registered successfully -  VAmPI



Figure 72: Login Request  - VAmPI

Figure 73: Login  Successful - auth_token  - VAmPI

5.3.2 Reconnaissance

Reconnaissance is a stage where we want to actively start probing the target infrastructure and 

fingerprint running services for open ports, types of running services, banners, subdomains, 

identification of technology stacks, analysing application behaviour and all endpoints.



5.3.2.1    Port Scanning

With port scanning, we seek to gain insights into the operations of the server and determine what 

ports are open, how many ports are open, what the highest and lowest ports are and what services 

are running on those ports.

Figure 74: Running a basic enumeration scan with nmap

Nmap scanning options

1 nmap -sV 10.38.1.110

2 nmap --script=http-headers 10.38.1.110

3 nmap --script=http-methods 10.38.1.110

4 nmap -sC -sV -A -p- 10.38.1.110

Table 44: nmap scanning options

5.3.2.2    Technology Identification

We want to identify the web technology stack currently being used by the target to understand better

how the API was built and how the technology is currently being used. We also look to identify any 

possible version numbers alongside web technology stacks which we could correlate with exploit 

databases. However, we're just interested in knowing what this application is made of, as it's a 

headless, server-based API with no front-end application.

Technology stack Technology

Documentation tools Swagger UI

JavaScript frameworks Zone.js, Angular 15.2.9, React, AngularJS



Font scripts Font Awesome, Google Font API

Miscellaneous Module Federation 50% sure, Webpack 50% 

sure

Programming languages TypeScript

CDN Cdnjs, Google Hosted Libraries, Cloudflare

JavaScript libraries JQuery 2.2.4, core-js 3.30.2, Moment.js

UI frameworks Bootstrap 4.5.3, Angular Material 1.1.0

Table 45: Wappalyzer Tech Stack - VAmPI

Figure 75: Whatweb - VAmPI

5.3.3    Content Discovery

Content discovery is a stage where we want to discover as many assets that are exposed to the 

internet as possible. We can think of it as shooting in the dark, where we make a lot of requests 

using brute-force tools and word lists, hoping to find assets that have been left exposed.

Figure 76: Directory and File Brute-force  using API word list and common file extension names

5.3.4    Endpoint Analysis

As we have already identified through the documentation, we have already found many possible 

endpoints that are interesting to us. More specifically, the '/users/v1/' endpoint is of particular 

interest as this allows us to see the user's information, such as their registered email address, which 



can result in data harvesting and facilitate brute-force/password spray attacks as seen in the 

Myanmar investment breach (Bofa, 2021).

We will save all the endpoints and usernames to a file and run a vulnerability scan over all of these 

endpoints to identify possible vulnerabilities.

Figure 77: Endpoints to scan in automatic SQLi scanning via sqlmap to test for SQLi

vulnerabilities

5.3.5    Vulnerability Scanning

As part of our penetration test, we will perform automatic vulnerability scanning. The advantages 

here are that vulnerability scanners can quickly check a host for various vulnerabilities and check 

their validation before reporting a possible vulnerability. We note that sometimes false positives 

(incorrectly identified vulnerabilities classified as vulnerable) occur. For this reason, if we find any 

vulnerabilities through automated scanning, we must validate them during the exploitation phase.



Figure 78: Nuclei Vulnerability Scanning 

5.3.6    API Analysis

After running a vulnerability scan, it’s obvious that there are now obvious low-hanging fruit 

vulnerabilities that can be exploited (easily). At this stage, we will take what we found in our 

endpoint analysis section, save all the API endpoints to a file and run them all through the sqlmap 

vulnerability scanning tool as a quick way to discover a possible SQL injection vulnerability.

Here, we tested various endpoints and usernames with different payloads. We finally discovered 

that using an apostrophe at the end of the /users/v1/admin’ made the API return an error, a typical 

SQLi vulnerability indication. We can also use the below command to quickly scan all endpoints of 

an API to test for SQLi:

Command Description

sqlmap -m endpoints.txt --batch --

answer=”redirect=N” (Enlacehacktivista, n.d) 

(see Table 41)

This command takes the crawled endpoints you 

previously found through web crawling, scans 

the application testing for sequel injection 

(SQLi) and ensures no user interaction is 

required during the scan to ensure it scans all 

endpoints.

Table 46: sqlmap command to scan an entire application and all its endpoints for SQLi



Figure 79: Identifying vulnerable SQLi endpoints testing with payload (‘)



Figure 80: SQLi payload (‘) test response

5.3.7    Exploitation

To exploit the sequel injection vulnerability we identified previously, we will use the sqlmap tool, as

seen in Figure 81, to exploit the SQLi vulnerability for us automatically.



Figure 81: SQLi Exploitation 

As shown in Figure 81, the API is vulnerable to SQLi attack, and we were able to successfully 

exploit this vulnerability by listing the database tables.

Figure 82: Database tables enumerated - POC



6. Chapter 6 – Discussion and Conclusion

6.1    Introduction

Here, we focus on summarising and discussing each chapter to evaluate our overall research project 

and assess future work, limitations and how the project overall contributed to the cyber security 

industry and the API security field.

6.2    Research Context

The need for an API penetration testing methodology was because there did not exist a publicly 

available methodology to teach inexperienced hackers how to hack APIs. There does exist a 

hacking methodology that focuses only on web applications, developed by Jason Haddix 

(NahamSec, 2020); however, this does not exist for APIs, and that was our primary motivation and 

research gap to address. We wanted to learn more in-depth about how to hack APIs, document the 

process and produce a deliverable that could be taken and used immediately or as the foundations to

further build upon helping others create their own methodologies.

6.3    Hypothesis Revisited

Our hypothesis, which we proved, states that implementing an effective API penetration testing 

methodology will significantly enhance the security of APIs and reduce the risk of data breaches. It 

is clear that with a structured and robust methodology for approaching a penetration test where you 

know what each next step is going to be and your methodology includes all the current trends (The 

Hacker News, 2023) and essential elements of API hacking, which ours does, we can significantly 

reduce the attack surface and the opportunity for threat actors to exploit these vulnerabilities to 

cause a data breach. Though we do not have data to prove this in the real world, by covering all the 

main elements of penetration testing and ensuring they are applied in testing, we can be confident 

that we will be able to identify vulnerabilities, validate existing security controls and provide 

assurance to the client that their API is secure.

6.4    Recap of The Literature Review

The literature review seeks to find as much relevant literature that will aid in learning and 

developing our implementation. From the literature, we learnt techniques, tooling, resources, and 

commonly exploited attack vectors and ethical bug bounty reports, seeing how ethical hackers 



discovered their findings (see Appendix G), alongside prioritising the most critical and commonly 

found vulnerability, BOLA. We were able to not only identify research gaps but also critique the 

literature sources by their thematic groups in order to address some of the key points noted in our 

implementation, such as further understanding how to find and exploit BOLA and focus on ethical 

testing where we state using accounts only owned and controlled by the tester and not use legitimate

customer accounts as that would violate data protection laws (see Table 15) and be unethical.

6.5    Research Methodology Overview

In order to prove our hypothesis, we need to develop a methodological approach to how we will 

conduct initial research, implement the proposed research project and test our implementation to 

ensure it works. The process we went through was to, through our literature review, identify 

common themes, attack vectors and vulnerabilities specific to APIs, identify real-world blackhat 

hacker playbooks, write-ups and methodology to understand better how threat actors go through the

process of vulnerability identification and exploitation, then compare that with how white hats 

conduct their ethical testing and see what the differences were and how we can take both 

approaches and implement that as part of our API hacking methodology. We also identify common 

and specific API penetration testing tools, word lists, resources and virtual machines to conduct our 

testing. We finish our methodology with ethical considerations, such as virtual machine usage and 

testing, possible limitations, and ethical considerations to ensure compliance.

6.6    Research Implementation Overview

Chapter 4, Implementation, is the deliverable that we built to provide penetration testers who are 

either new or well-experienced a methodology which they can use and take away to improve 

security testing against APIs, both for REST and GraphQL. Our primary motivation behind the 

methodologies development was so that we could help better train and create awareness for security

professionals and developers so that they can better test and develop APIs more securely, which will

have the positive side effect of reducing the amount of data breaches we are seeing (see Table 14) 

directly from API exploitation.



6.7    Testing and Results Summary

6.7.1    Effectiveness

The effectiveness of the API methodology discovered through our testing shows that it works well 

for someone experienced and inexperienced and provides insights, knowledge, tips and tricks 

alongside tooling with command examples to go through the reconnaissance and vulnerability 

identification process. The methodology is robust, covering all essential elements of a penetration 

test specific to API technology and architectures and also shows how and why you would choose to 

conduct each stage of testing, such as JavaScript code analysis to find developer comments, private 

keys, tokens, directory and file paths, discovering hidden features, understanding the applications 

underlying logic and other potentially sensitive information.

6.7.2    Limitations and Challenges

A limitation we discovered while using the API penetration testers methodology is the API analysis 

section. Although it is good that the methodology has touched upon the BOLA vulnerability, which 

is rated as number one on the OWASP API top ten in terms of severity, the methodology lacks the 

inclusion of more OWASP API top ten vulnerabilities (OWASP, 2023). APIs will have more 

vulnerabilities than just BOLA, and it would be good to cover at least the top three vulnerabilities 

from the OWASP top ten. It has been challenging to know what other vulnerability types to look for

during testing as the methodology only covers BOLA.

6.7.3    Areas for Improvement

Improvements to the methodology would include sub-methodologies for each API technology that 

the tester will be testing. This means having a sub-methodology for RESTful and GraphQL APIs 

instead of trying to do both in one methodology, as this provides little focus on each API and thus 

lacks vulnerability depth. Also, the inclusion of more OWASP API vulnerabilities would be 

beneficial.

6.7.3.1    Expand testing

Integrating more vulnerable APIs and performing testing against those instead of just VAmPI would

allow for more thorough testing of the API methodology as it would be used to test against different 

APIs and software stacks.



6.7.3.2    Modularise the Methodology

Modularising the methodology will better help testers know which stage of the methodology to use 

for their specific use case during their penetration tests and almost allows the tester to build their 

own methodology from the current one specific to their current needs and requirements.

6.7.3.3    Documentation & Note Taking

Finally, the methodology does not show a practical way to take all of the findings from your 

penetration test and note them down, which can then be used to produce a penetration test report at 

the end of the engagement to deliver your findings to the client.

6.8    Research Reflections

6.8.1    Objectives

As shown in Table 47, our main research objectives show what we were initially seeking to learn, 

take away and achieve from this research project.

Main Objectives Reason

Develop a robust and thorough API penetration 

testing methodology.

To stunt the progression at which we see data 

breaches occur because of API exploits, we need

to develop and provide testers and developers 

with a methodology to test their APIs better and 

learn common attack vectors favoured by threat 

actors so that the tester can discover the same 

vulnerabilities as the threat actor. This would 

result in a more secure API security posture and 

reduce the opportunity for attackers to cause a 

data breach in the organisation.

Identify the most prevalent API-specific 

vulnerabilities.

To ensure that we can effectively test and secure 

APIs, we need to be aware of the most common 

and critical vulnerabilities that APIs can be 

exposed to so that we can look for them during 

our testing and remediate them.

Identify the key tools to use in the methodology. Similar to identifying the most critical 



vulnerabilities to which APIs can be exposed, 

we need to source the correct tools, services, and

resources to use during our testing to streamline 

our tests specifically to APIs. This ensures we 

discover API vulnerabilities and reduces the 

chance of discovering false positive web 

application vulnerabilities. Also, tools designed 

for web applications may not work when used 

on APIs because they differ in design and 

architecture.

Research penetration testing tips and tricks 

relevant to API hacking.

When reading through our sourced body of 

literature (see Table 5), bug bounty reports (see 

Appendix G) and methodologies (see Table 16, 

we need to analyse and identify relevant tips and

tricks that can commonly work against most 

APIs and are good areas to quickly cover to 

ensure we find low hanging fruit vulnerabilities 

before delving deeper into the test ensuring good

ground coverage throughout the penetration test.

Cover the walk-through of at least one 

vulnerability and show its impact.

Broken Object Level Authorisation (BOLA) is 

currently (2023) the most common and critical 

API vulnerability (OWASP, 2023) that results in 

the biggest impact when exploited. For this 

reason, we will prioritise its demonstration in 

our implementation.

Demonstrate how to set up the testing 

environment.

To test our implementation and provide practical

demonstrations through the methodology for 

clarity, we will set up a virtual testing lab, which

will use VirtualBox to isolate the machines and 

the network. This also ensures ethical 

compliance for the ethics committee (see 

Appendix A). The machines that will be used 

will be vulnerable API machines to perform 

testing against, and we will test from a Kali 



Linux machine, making it clear who the tester 

and server are.

Ensure the methodology is reproducible and 

actionable.

To ensure that the methodology can be 

reproduced and to allow readers not to have to 

read through the whole methodology each time 

they want to refer back to something relevant to 

their specific engagement, we produce a tool 

and cheat sheet table with all the commands and 

tools used during the methodology with tips and 

tricks.

Understand why APIs are commonly being 

targeted in attacks.

Attackers are looking for the path of least 

resistance when looking to steal data. Threat 

actors commonly look for the easiest way into 

your networks to steal your data and then sell it 

or publicly leak it for reputational points on 

forums (Zoltan, 2022). APIs are increasingly 

becoming the target of attacks because they have

direct access to data and backend services. 

Commonly, organisations have poor visibility 

into how many APIs they have, how many are in

use and how many are just sitting on their 

infrastructure, deprecated and no longer in use 

(zombie API).

Allow readers with varying skills and experience

to understand the concepts shown throughout the

methodology.

The methodology was designed to be useful for 

experienced testers and as an educational 

resource for those inexperienced wanting to 

learn API hacking.

Table 47: Core research objectives

We proved our hypothesis and met our core research objectives. We feel confident to apply the 

methodology as seen in Chapter 5 in real-world penetration testing engagements, providing clients 

with the best possible testing service.



6.8.2    Findings

From our Chapter 5 testing, we found that the methodology covers all of the essential elements of 

an API penetration testing engagement, covering aspects such as JavaScript file enumeration and 

GraphQL inspection, information gathering, passive and active reconnaissance, content discovery, 

automated vulnerability scanning and API analysis specific to REST and GraphQL APIs.

Our main findings are laid out in Table 48, which helped us identify areas for improvement. The 

penetration test methodology worked well and helped us realise that not all aspects will apply to all 

penetration testing engagement scenarios as the methodology is quite broad; however, it covers all 

the essential elements expected from a standard API penetration test.

6.8.3    Contributions

Initially, as we decided whether we would choose API security as our research topic, we identified 

in the cyber security field the general lack of focus, research and tooling made towards API security.

We knew about some initial researchers (see Table 8), their works (see Table 5) and some tooling. 

However, we wanted to contribute to the API security field what is commonplace in the web 

application security field by developing an API penetration testing methodology to effectively 

conduct ethical security testing to discover and exploit vulnerabilities with a focus not on how to 

exploit the identified vulnerability but where to look for vulnerabilities.

6.9    Recommendations for Future Work

To further improve the methodology and to build a more robust API penetration testing 

methodology with a focus on functionality testing, we should consider the following:

Area of Improvement Future Work

Building an automation framework Building an automation framework: A bash 

script that chains all the tools covered in the 

methodology into a framework (see Appendix F)

that would automate information gathering, 

passive and active reconnaissance, content 

discovery, endpoint analysis, fuzzing and 

vulnerability scanning specifically for API 

penetration testing.

Incorporating more API-specific vulnerabilities Incorporating more API-specific vulnerabilities 



into the analysis subsection of the 

implementation

in the API analysis subsection: The methodology

currently focuses on discovering and exploiting 

BOLA as part of the API analysis subsection. To

further improve the methodology and to provide 

more coverage for penetration testers, the 

inclusion of Broken User Authentication, 

Excessive Data Exposure, Lack of Rate 

Limiting, Broken Authorisation, Injection, 

Security Misconfigurations and Mass 

Assignment (OWASP, 2023) would enhance the 

methodology allowing for testers to know how 

and what to look for covering and discovering 

more vulnerability types.

Research on vulnerability weaponization Research how vulnerabilities could be 

weaponised on mass to exploit and exfiltrate 

user data and then implement safeguards and 

detection mechanisms to prevent and detect 

malicious activity, as Alissa Knight's white 

paper (Knight, 2021) shows that organisations 

don’t have clear visibility into their API 

infrastructure.

Table 48: Work for future improvements

6.10    Dissertation Research Project Conclusion

We conducted our initial research by sourcing relevant literature and organising them by their 

thematic groups. We then analysed the literature and sought to identify key information, such as 

information gathering, reconnaissance, content discovery, vulnerability scanning and API 

application analysis, to implement the key findings into our implementation to make the API 

penetration testing methodology more robust. We then laid out our research methodology, in which 

we go through how we will perform our implementation and the tools and services we will use. 

Then, we consider ethical issues and possible limitations. We then fully developed our 

implementation, which we believe is very strong, backed by our testing and analyses of the results 

and robust methodology that incorporates all the essential elements of an API-specific penetration 

test and showcases the differences in technique and tooling from hacking web applications, which 



was a core objective in order to show security testers the difference. We then performed testing to 

asses the implementation's effectiveness.



References
Avertium. (2022). API Attacks & Best Practices. https://explore.avertium.com/resource/api-attacks-

and-best-practices

Afri TechNet, (2016). Phineas Fisher Hacks Catalan Police Union Website (Pt. 2). 

https://youtu.be/kCLDqvDnGzA

Arthur, C. (2013). LulzSec: what they did, who they were and how they were caught. 

https://www.theguardian.com/technology/2013/may/16/lulzsec-hacking-fbi-jail

APIsec University, (2022). Addressing API Security Risks and Preventing Data Breaches. 

https://youtu.be/u_JRRvavskY

Abrams, L. (2023). 200 million Twitter users' email addresses allegedly leaked online. 

https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-

allegedly-leaked-online

Abrams, L. (2021). Angry Conti ransomware affiliate leaks gang's attack playbook. 

https://www.bleepingcomputer.com/news/security/angry-conti-ransomware-affiliate-leaks-gangs-

attack-playbook

Apisecurity, (n.d). OWASP API Security Top 10. [PDF]. 

https://apisecurity.io/encyclopedia/content/owasp-api-security-top-10-cheat-sheet-a4.pdf

Assetnote. (n.d). Contextual Content Discovery Tool . https://github.com/assetnote/Kiterunner

Assetnote. (n.d). Assetnote Wordlists. https://wordlists.assetnote.io

Aboul3la. (n.d). Fast subdomains enumeration tool for penetration testers. 

https://github.com/aboul3la/Sublist3r

Auth0. (n.d). JWT.IO allows you to decode, verify and generate JWT. https://jwt.io

AdmiralGaust. (n.d). Bash script to automate Bug Bounty Reconnaissance. 

https://github.com/AdmiralGaust/bountyRecon

BuiltWith. (n.d). Find out what websites are Built With. https://builtwith.com

Bicchierai, L. (2016). The Vigilante Who Hacked Hacking Team Explains How He Did It. 

https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-

did-it

https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://builtwith.com/
https://github.com/AdmiralGaust/bountyRecon
https://jwt.io/
https://github.com/aboul3la/Sublist3r
https://wordlists.assetnote.io/
https://github.com/assetnote/Kiterunner
https://apisecurity.io/encyclopedia/content/owasp-api-security-top-10-cheat-sheet-a4.pdf
https://www.bleepingcomputer.com/news/security/angry-conti-ransomware-affiliate-leaks-gangs-attack-playbook
https://www.bleepingcomputer.com/news/security/angry-conti-ransomware-affiliate-leaks-gangs-attack-playbook
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online
https://youtu.be/u_JRRvavskY
https://www.theguardian.com/technology/2013/may/16/lulzsec-hacking-fbi-jail
https://youtu.be/kCLDqvDnGzA
https://explore.avertium.com/resource/api-attacks-and-best-practices
https://explore.avertium.com/resource/api-attacks-and-best-practices


Bhatnagar, G. (2018). Pentesting Rest API's. https://www.slideshare.net/OWASPdelhi/pentesting-

rest-apis-by-gaurang-bhatnagar

Bicchierai, L. (2016). https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-

team-explains-how-he-did-it

Blue, V. (2014).  Top gov't spyware company hacked; Gamma's FinFisher leaked. 

https://www.zdnet.com/article/top-govt-spyware-company-hacked-gammas-finfisher-leaked

Bassterlord. (n.d). BasterLord - Network manual v2.0. 

https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/

vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf

Ball, C. (2022). Hacking APIs: Breaking Web Application Programming Interfaces. [Book]

Bombal, D. (2022). Hacking APIs and Cars: You need to learn this in 2023! 

https://youtu.be/4VaHN4CG34w

Bugcrowd, (2022). LevelUpX - Series 3: How I hacked 55 Banks & Cryptocurrency Exchanges 

with Alissa Knighta. https://youtu.be/6yB33FihwtE

Bombal, D. (2022). Free API Hacking course! https://youtu.be/CkVvB5woQRM

Bombal, D. (2023). Real World Hacking Tools Tutorial (Target: Tesla). https://youtu.be/-

jLbRnmGYaA?si=OZrNJNKZvHwJ2zon

Bicchierai, L. (2017). T-Mobile Website Allowed Hackers to Access Your Account Data With Just 

Your Phone Number. https://www.vice.com/en/article/wjx3e4/t-mobile-website-allowed-hackers-to-

access-your-account-data-with-just-your-phone-number

Bombal, D. (2023). How this hacker Hacked NASA in 60 seconds (Real World Tutorial). 

https://youtu.be/ZpdgqsviAiA?si=ozmU2ZaBaHXisD8Y

Barr, J. et al. (2023). Hacktivism in Latin America:The Case of Guacamaya. 

https://static1.squarespace.com/static/63ecbb167597522082d99465/t/

643d4ac792335924426fced5/1681738440405/

Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf

Bofa, S. (2021). Full Disclosure: DICA IMS Privilege Escalation Exploit (CVE-D33Z-NUTZ). 

https://bofa.substack.com/p/full-disclosure-dica-ims-privilege

Capt-meelo. (n.d). An automated approach to performing recon for bug bounty hunting and 

penetration testing. https://github.com/capt-meelo/LazyRecon

https://github.com/capt-meelo/LazyRecon
https://bofa.substack.com/p/full-disclosure-dica-ims-privilege
https://static1.squarespace.com/static/63ecbb167597522082d99465/t/643d4ac792335924426fced5/1681738440405/Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf
https://static1.squarespace.com/static/63ecbb167597522082d99465/t/643d4ac792335924426fced5/1681738440405/Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf
https://static1.squarespace.com/static/63ecbb167597522082d99465/t/643d4ac792335924426fced5/1681738440405/Barr+and+Liemann+Escobar+(2023)+Hacktivism+in+Latin+America.pdf
https://youtu.be/ZpdgqsviAiA?si=ozmU2ZaBaHXisD8Y
https://www.vice.com/en/article/wjx3e4/t-mobile-website-allowed-hackers-to-access-your-account-data-with-just-your-phone-number
https://www.vice.com/en/article/wjx3e4/t-mobile-website-allowed-hackers-to-access-your-account-data-with-just-your-phone-number
https://youtu.be/-jLbRnmGYaA?si=OZrNJNKZvHwJ2zon
https://youtu.be/-jLbRnmGYaA?si=OZrNJNKZvHwJ2zon
https://youtu.be/CkVvB5woQRM
https://youtu.be/6yB33FihwtE
https://youtu.be/4VaHN4CG34w
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://www.zdnet.com/article/top-govt-spyware-company-hacked-gammas-finfisher-leaked
https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://www.vice.com/en/article/3dad3n/the-vigilante-who-hacked-hacking-team-explains-how-he-did-it
https://www.slideshare.net/OWASPdelhi/pentesting-rest-apis-by-gaurang-bhatnagar
https://www.slideshare.net/OWASPdelhi/pentesting-rest-apis-by-gaurang-bhatnagar


Chrislockard. (n.d). A wordlist of API names for web application assessments. 

https://github.com/chrislockard/api_wordlist

Crtsh. (n.d). Certificate Search Engine. https://crt.sh/?q=

Censys. (n.d). Search Engine. https://search.censys.io

Canonical. (n.d). Ubuntu downloads - Ubuntu Desktop. https://ubuntu.com/download

Cox, J. (2016). A Notorious Hacker Just Released a How-To Video Targeting Police.  

https://www.vice.com/en/article/vv77y9/phineas-fisher-sme

Cyble. (2021). Conti Secrets Hacker’s Handbook Leaked. https://cyble.com/blog/conti-secrets-

hackers-handbook-leaked

Cox, et al. (2017). 'I'm Going to Burn Them to the Ground': Hackers Explain Why They Hit the 

Stalkerware Market. https://www.vice.com/en/article/vvabv3/hackers-why-they-hit-stalkerware-

flexispy-retina-x

Cox, J. (2019). Offshore Bank Targeted By Phineas Fisher Confirms it Was Hacked. 

https://www.vice.com/en/article/ne8p9b/offshore-bank-targeted-phineas-fisher-confirms-hack-

cayman-national-bank

Cry0l1t3, (n.d). Penetration Testing Process. 

https://academy.hackthebox.com/course/preview/penetration-testing-process

CISA. (2023). 2022 Top Routinely Exploited Vulnerabilities. 

https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a

Cameron, D. (2014). How an FBI informant orchestrated the Stratfor hack. 

https://www.dailydot.com/debug/hammond-sabu-fbi-stratfor-hack

Cameron, D. (2012). Stratfor Computer Forensic Investigation. 

https://www.scribd.com/document/229261982/Stratfor-Computer-Forensic-Investigation

Cloudflare. (2021). A Guide to API Security. 

https://www.cloudflare.com/static/62af8fcd051f631df12ac980730fde8a/

API_Shield_white_paper.pdf

Cloudflare. (n.d). What is defense in depth? | Layered security. 

https://www.cloudflare.com/en-gb/learning/security/glossary/what-is-defense-in-depth

Cubrilovic, N. (2009). RockYou Hack: From Bad To Worse. 

https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords

https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords
https://www.cloudflare.com/en-gb/learning/security/glossary/what-is-defense-in-depth
https://www.cloudflare.com/static/62af8fcd051f631df12ac980730fde8a/API_Shield_white_paper.pdf
https://www.cloudflare.com/static/62af8fcd051f631df12ac980730fde8a/API_Shield_white_paper.pdf
https://www.scribd.com/document/229261982/Stratfor-Computer-Forensic-Investigation
https://www.dailydot.com/debug/hammond-sabu-fbi-stratfor-hack
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a
https://academy.hackthebox.com/course/preview/penetration-testing-process
https://www.vice.com/en/article/ne8p9b/offshore-bank-targeted-phineas-fisher-confirms-hack-cayman-national-bank
https://www.vice.com/en/article/ne8p9b/offshore-bank-targeted-phineas-fisher-confirms-hack-cayman-national-bank
https://www.vice.com/en/article/vvabv3/hackers-why-they-hit-stalkerware-flexispy-retina-x
https://www.vice.com/en/article/vvabv3/hackers-why-they-hit-stalkerware-flexispy-retina-x
https://cyble.com/blog/conti-secrets-hackers-handbook-leaked
https://cyble.com/blog/conti-secrets-hackers-handbook-leaked
https://www.vice.com/en/article/vv77y9/phineas-fisher-sme
https://ubuntu.com/download
https://search.censys.io/
https://crt.sh/?q
https://github.com/chrislockard/api_wordlist


Coinbase, (2022). Retrospective: Recent Coinbase Bug Bounty Award. 

https://www.coinbase.com/blog/retrospective-recent-coinbase-bug-bounty-award

Dolevf. (n.d). NSE Script for GraphQL Introspection Check. https://github.com/dolevf/nmap-

graphql-introspection-nse

Dolevf. (n.d). Damn Vulnerable GraphQL Application is an intentionally vulnerable implementation

of Facebook's GraphQL technology, to learn and practice GraphQL Security. 

https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application

DevSlop. (n.d). The Pixi module is a MEAN Stack web app with wildly insecure APIs! 

https://github.com/DevSlop/Pixi

Danielmiessler. (n.d). SecLists is the security tester's companion. It's a collection of multiple types 

of lists used during security assessments, collected in one place. List types include usernames, 

passwords, URLs, sensitive data patterns, fuzzing payloads, web shells, and many more. 

https://github.com/danielmiessler/SecLists

DuckDuckGo. (n.d). Search Engine. https://duckduckgo.com

Dolevf. (n.d).  graphw00f is GraphQL Server Engine Fingerprinting utility for software security 

professionals looking to learn more about what technology is behind a given GraphQL endpoint. 

https://github.com/dolevf/graphw00f

Dwisiswant0. (n.d). St8out - Extra one-liner for reconnaissance. 

https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd

DiMaggio, J. (n.d). Ransomware Diaries: Volume 2 – A Ransomware Hacker Origin Story. 

https://analyst1.com/ransomware-diaries-volume-2

EnlaceHacktivista, (n.d). Flexidie LeopardBoy and the Deceptions. 

https://enlacehacktivista.org/images/8/8f/Flexispy.txt

EnlaceHacktivista, (n.d). Hack Back! A DIY Guide. https://enlacehacktivista.org/index.php?

title=Hack_Back!_A_DIY_Guide

EnlaceHacktivista. (n,d). SQL Injection – sqlmap command example. 

https://enlacehacktivista.org/index.php?title=Common_Service_Attacks#Injection

EnlaceHacktivista, (n.d). Liberty Counsel Breach. https://enlacehacktivista.org/libertycounsel.txt

EnlaceHacktivista, (n.d). Hacker History. https://enlacehacktivista.org/index.php?

title=Hacker_History

https://enlacehacktivista.org/index.php?title=Hacker_History
https://enlacehacktivista.org/index.php?title=Hacker_History
https://enlacehacktivista.org/libertycounsel.txt
https://enlacehacktivista.org/index.php?title=Common_Service_Attacks#Injection
https://enlacehacktivista.org/index.php?title=Hack_Back!_A_DIY_Guide
https://enlacehacktivista.org/index.php?title=Hack_Back!_A_DIY_Guide
https://enlacehacktivista.org/images/8/8f/Flexispy.txt
https://analyst1.com/ransomware-diaries-volume-2
https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd
https://github.com/dolevf/graphw00f
https://duckduckgo.com/
https://github.com/danielmiessler/SecLists
https://github.com/DevSlop/Pixi
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/dolevf/nmap-graphql-introspection-nse
https://github.com/dolevf/nmap-graphql-introspection-nse
https://www.coinbase.com/blog/retrospective-recent-coinbase-bug-bounty-award


Enlacehacktivista, (2022). Hack Back! A DIY Guide to Digital Monkeywrenching. 

https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T

Epi052. (n.d). An automated target reconnaissance pipeline. https://github.com/epi052/recon-

pipeline

E26174222. (2021). Missing authentication in buddy group API of LINE TIMELINE. 

https://hackerone.com/reports/1283938

Epi052. (n.d). A fast, simple, recursive content discovery tool written in Rust. 

https://github.com/epi052/feroxbuster

Erev0s. (n.d). Vulnerable REST API with OWASP top 10 vulnerabilities for security testing. 

https://github.com/erev0s/VAmPI

Forbiddenstories. (n,d). https://forbiddenstories.org/case/mining-secrets

Freeman, E. (2020). API Security for dummies. 

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJ9kN

Ffuf. (n.d). Fast web fuzzer written in Go. https://github.com/ffuf/ffuf

Findomain. (n.d). The fastest and complete solution for domain recognition. Supports 

screenshoting, port scan, HTTP check, data import from other tools, subdomain monitoring, alerts 

via Discord, Slack and Telegram, multiple API Keys for sources and much more. 

https://github.com/Findomain/Findomain

Farhi, D. et al. (2023). Black Hat GraphQL: Attacking Next Generation APIs. [Book]

Futuriom. (2023). API and Shift Left Security (With RSA Conference Wrap). 

https://ia902609.us.archive.org/10/items/2023-shift-left-and-api-security-v-1.5-final/2023-Shift-

Left-and-API-Security-v1.5-final.pdf

Gatlan, S. (2023). T-Mobile hacked to steal data of 37 million accounts in API data breach. 

https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-

accounts-in-api-data-breach

Google. (n.d). Search Engine. https://www.google.com

GitHub. (n.d). Version Control Search. https://github.com/search

Gwen001. (n.d). Find subdomains on GitHub. https://github.com/gwen001/github-subdomains

Gwen001. (n.d). Find endpoints on GitHub. https://github.com/gwen001/github-endpoints

https://github.com/gwen001/github-endpoints
https://github.com/gwen001/github-subdomains
https://github.com/search
https://www.google.com/
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach
https://ia902609.us.archive.org/10/items/2023-shift-left-and-api-security-v-1.5-final/2023-Shift-Left-and-API-Security-v1.5-final.pdf
https://ia902609.us.archive.org/10/items/2023-shift-left-and-api-security-v-1.5-final/2023-Shift-Left-and-API-Security-v1.5-final.pdf
https://github.com/Findomain/Findomain
https://github.com/ffuf/ffuf
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJ9kN
https://forbiddenstories.org/case/mining-secrets
https://github.com/erev0s/VAmPI
https://github.com/epi052/feroxbuster
https://hackerone.com/reports/1283938
https://github.com/epi052/recon-pipeline
https://github.com/epi052/recon-pipeline
https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T


Gwen001. (n.d).  Basically a regexp over a GitHub search. https://github.com/gwen001/github-

regexp

Gallagher, S. (2017). T-Mobile customer data plundered thanks to bad API. 

https://arstechnica.com/information-technology/2017/10/t-mobile-website-bug-apparently-

exploited-to-mine-sensitive-account-data

Goodin, D. (2021). Data leak makes Peloton’s Horrible, No-Good, Really Bad Day even worse. 

https://arstechnica.com/gadgets/2021/05/peloton-takes-3-months-to-fix-flaw-that-exposed-users-

private-information

GOV UK, (2022). Cyber Security Breaches Survey 2022. 

https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-

breaches-survey-2022

GOV UK. (n.d). Non-disclosure agreements. https://www.gov.uk/government/publications/non-

disclosure-agreements

Gallagher, B. (2013). Hacker Scrapes Thousands Of Public Phone Numbers Using Facebook Graph 

Search. https://techcrunch.com/2013/06/24/hacker-scrapes-thousands-of-public-phone-numbers-

using-facebook-graph-search

HackerOne. (2022).  The Bug Hunter's Methodology - Application Analysis | Jason Haddix. 

https://youtu.be/FqnSAa2KmBI

Hensis. (2021). No brute force protection on web-api-cloud.acronis.com. 

https://hackerone.com/reports/972045

Healdb. (2021). API on campus-vtc.com allows access to ~100 Uber users full names, email 

addresses and telephone numbers. https://hackerone.com/reports/580268

hAPI-hacker. (n.d). Web API specific word lists. https://github.com/hAPI-hacker/Hacking-APIs

HackerTarget. (n.d). dns recon & research, find & lookup dns records. https://dnsdumpster.com

Inhibitor181. (2022). [h1-2102] shopApps query from the graphql at /users/api returns all existing 

created apps, including private ones. https://hackerone.com/reports/1085332

Isbitski, M. (2021). Recap: The 7 Biggest API Security Incidents in 2021. 

https://salt.security/blog/recap-7-biggest-api-security-incidents-in-2021

Isbitski, M. (2023). Salt Security Special Edition. API Security for dummies. 

https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-eBook-

APISecurityforDummies.pdf

https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-eBook-APISecurityforDummies.pdf
https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-eBook-APISecurityforDummies.pdf
https://salt.security/blog/recap-7-biggest-api-security-incidents-in-2021
https://hackerone.com/reports/1085332
https://dnsdumpster.com/
https://github.com/hAPI-hacker/Hacking-APIs
https://hackerone.com/reports/580268
https://hackerone.com/reports/972045
https://youtu.be/FqnSAa2KmBI
https://techcrunch.com/2013/06/24/hacker-scrapes-thousands-of-public-phone-numbers-using-facebook-graph-search
https://techcrunch.com/2013/06/24/hacker-scrapes-thousands-of-public-phone-numbers-using-facebook-graph-search
https://www.gov.uk/government/publications/non-disclosure-agreements
https://www.gov.uk/government/publications/non-disclosure-agreements
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://arstechnica.com/gadgets/2021/05/peloton-takes-3-months-to-fix-flaw-that-exposed-users-private-information
https://arstechnica.com/gadgets/2021/05/peloton-takes-3-months-to-fix-flaw-that-exposed-users-private-information
https://arstechnica.com/information-technology/2017/10/t-mobile-website-bug-apparently-exploited-to-mine-sensitive-account-data
https://arstechnica.com/information-technology/2017/10/t-mobile-website-bug-apparently-exploited-to-mine-sensitive-account-data
https://github.com/gwen001/github-regexp
https://github.com/gwen001/github-regexp


ICO. (2020). ICO fines British Airways £20m for data breach affecting more than 400,000 

customers. https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-

events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-

400-000-customers

Inspector General, (2018). Office of Inspector General | United States Postal Service Audit Report 

Informed Visibility Vulnerability Assessment. 

https://web.archive.org/web/20190412233722/https://uspsoig.gov/sites/default/files/document-

library-files/2018/IT-AR-19-001.pdf

Irwin, L. (2023). Demystifying the CIA Triad: Why It’s Crucial for Cyber Security. 

https://itgovernance.co.uk/blog/what-is-the-cia-triad-and-why-is-it-important

IBM Security X-Force Threat Intelligence, (2021). 2021 IBM Security X-Force Cloud Threat 

Landscape Report. https://www.ibm.com/downloads/cas/WMDZOWK6

ISO. (2022). ISO/IEC 27001 Information security management systems. 

https://www.iso.org/standard/27001

ICO, (n.d). Understanding and assessing risk in personal data breaches. https://ico.org.uk/for-

organisations/sme-web-hub/understanding-and-assessing-risk-in-personal-data-breaches

InsiderPhD. (2020).  Finding Your First Bug: Finding Bugs Using APIs. 

https://www.youtube.com/watch?

v=yCUQBc2rY9Y&list=PLbyncTkpno5HqX1h2MnV6Qt4wvTb8Mpol

Ilascu, I. (2021). Translated Conti ransomware playbook gives insight into attacks. 

https://www.bleepingcomputer.com/news/security/translated-conti-ransomware-playbook-gives-

insight-into-attacks

Jhaddix. (n,d). The Bug Hunters Methodology. https://github.com/jhaddix/tbhm

Jaeles-project. (n.d). The Swiss Army knife for automated Web Application Testing. 

https://github.com/jaeles-project/jaeles

Jon_bottarini. (2018). [NR Infrastructure] Bypass of #200576 through GraphQL query abuse - 

allows restricted user access to root account license key. https://hackerone.com/reports/276174

Juice-Shop. (n.d). OWASP Juice Shop: Probably the most modern and sophisticated insecure web 

application. https://github.com/juice-shop/juice-shop

Kothari, A. (2020). Introducing the GraphQL Add-on for ZAP. https://www.zaproxy.org/blog/2020-

08-28-introducing-the-graphql-add-on-for-zap

https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://github.com/juice-shop/juice-shop
https://hackerone.com/reports/276174
https://github.com/jaeles-project/jaeles
https://github.com/jhaddix/tbhm
https://www.bleepingcomputer.com/news/security/translated-conti-ransomware-playbook-gives-insight-into-attacks
https://www.bleepingcomputer.com/news/security/translated-conti-ransomware-playbook-gives-insight-into-attacks
https://www.youtube.com/watch?v=yCUQBc2rY9Y&list=PLbyncTkpno5HqX1h2MnV6Qt4wvTb8Mpol
https://www.youtube.com/watch?v=yCUQBc2rY9Y&list=PLbyncTkpno5HqX1h2MnV6Qt4wvTb8Mpol
https://ico.org.uk/for-organisations/sme-web-hub/understanding-and-assessing-risk-in-personal-data-breaches
https://ico.org.uk/for-organisations/sme-web-hub/understanding-and-assessing-risk-in-personal-data-breaches
https://www.iso.org/standard/27001
https://www.ibm.com/downloads/cas/WMDZOWK6
https://itgovernance.co.uk/blog/what-is-the-cia-triad-and-why-is-it-important
https://web.archive.org/web/20190412233722/https://uspsoig.gov/sites/default/files/document-library-files/2018/IT-AR-19-001.pdf
https://web.archive.org/web/20190412233722/https://uspsoig.gov/sites/default/files/document-library-files/2018/IT-AR-19-001.pdf
https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers
https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers
https://web.archive.org/web/20201101000609/https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers


Krebs, (2018). USPS Site Exposed Data on 60 Million Users. 

https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users

Kumar, M. (2011). LulzSec Leak Sony's Japanese websites Database ! 

https://thehackernews.com/2011/05/lulzsec-leak-sonys-japanese-websites.html

Keary, T. (2023). 50% of orgs report experiencing data breaches due to exposed API secrets. 

https://venturebeat.com/security/data-breaches-api

Knight, A. (2021). SCORCHED EARTH: HACKING BANKS AND CRYPTOCURRENCY 

EXCHANGES THROUGH THEIR APIS. https://ia601402.us.archive.org/6/items/scorched-earth-

whitepaper/Scorched-Earth-Whitepaper.pdf

Knight,  A. (2020). Memoirs of an API Hacker: Intercepting Encrypted Mobile Traffic to Hack a 

Bank's API Server. https://www.alissaknight.com/post/memoirs-of-an-api-hacker-intercepting-

encrypted-mobile-traffic-to-hack-a-bank-s-api-server

Kumar, M. (2019). Over 100 Million JustDial Users' Personal Data Found Exposed On the Internet.

https://thehackernews.com/2019/04/justdial-hacked-data-breach.html

Keary, T. (2023). T-Mobile data breach shows API security can’t be ignored. 

https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored

Keary, T. (2022). Twitter API security breach exposes 5.4 million users’ data. 

https://venturebeat.com/security/twitter-breach-api-attack

Li, V. (2021). Bug Bounty Bootcamp: The Guide to Finding and Reporting Web Vulnerabilities. 

[Book]

Lockheed Martin. (n.d). Lockheed Martin, the Cyber Kill Chain. 

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

Lakshmanan, R. (2023). Millions of Vehicles at Risk: API Vulnerabilities Uncovered in 16 Major 

Car Brands. https://thehackernews.com/2023/01/millions-of-vehicles-at-risk-api.html

Legislation. (n.d). Computer Misuse Act 1990. 

https://www.legislation.gov.uk/ukpga/1990/18/contents

Legislation. (n.d). Data Protection Act 2018. 

https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted

Legislation. (n.d). The Network and Information Systems Regulations 2018. 

https://www.legislation.gov.uk/uksi/2018/506

https://www.legislation.gov.uk/uksi/2018/506
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://www.legislation.gov.uk/ukpga/1990/18/contents
https://thehackernews.com/2023/01/millions-of-vehicles-at-risk-api.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://venturebeat.com/security/twitter-breach-api-attack
https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored
https://thehackernews.com/2019/04/justdial-hacked-data-breach.html
https://www.alissaknight.com/post/memoirs-of-an-api-hacker-intercepting-encrypted-mobile-traffic-to-hack-a-bank-s-api-server
https://www.alissaknight.com/post/memoirs-of-an-api-hacker-intercepting-encrypted-mobile-traffic-to-hack-a-bank-s-api-server
https://ia601402.us.archive.org/6/items/scorched-earth-whitepaper/Scorched-Earth-Whitepaper.pdf
https://ia601402.us.archive.org/6/items/scorched-earth-whitepaper/Scorched-Earth-Whitepaper.pdf
https://venturebeat.com/security/data-breaches-api
https://thehackernews.com/2011/05/lulzsec-leak-sonys-japanese-websites.html
https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users


Legislation. (n.d). The Privacy and Electronic Communications (EC Directive) Regulations 2003. 

https://www.legislation.gov.uk/uksi/2003/2426/contents/made

Microsoft Bing. (n.d). Search Engine. https://www.bing.com

Mozilla. (n.d). Firefox Browser Developer Edition. 

https://www.mozilla.org/en-GB/firefox/developer

Mozilla. (n.d). HTTP request methods. 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Mathur, A. (2020). API Discovery and Profiling -- Visibility to Protection. 

https://www.akamai.com/blog/security/api-discovery-and-profiling-visibility-to-protection

Moim, (2017). T-Mobile Info Disclosure Exploit. https://youtu.be/3_gd3a077RU

Madden, N. (2020). API Security in Action. https://www.manning.com/books/api-security-in-action

Nmap. (n.d). Network Mapper. https://nmap.org

Nikitastupin. (n.d). Obtain GraphQL API schema even if the introspection is disabled. 

https://github.com/nikitastupin/clairvoyance

NahamSec. (2023). Bug Bounty Recon Basics: The Complete Course (Part 1). 

https://www.youtube.com/live/krCsMZfbuB4?feature=share

Ngalog. (2019). Private System Note Disclosure using GraphQL. 

https://hackerone.com/reports/633001

Ndrong. (2021). Bumble API exposes read status of chat messages. 

https://hackerone.com/reports/1080437

Noname. (2023). The API Security Disconnect Research from Noname Security on API Security 

Trends in 2023. https://nonamesecurity.com/wp-content/uploads/2023/09/api-security-disconnect-

research-report-2023.pdf

NahamSec. (2022). Alissa Knight Talks About API Hacking, Car Hacking, Creating Content for 

Hackers and More! https://youtu.be/Y2Y4Sk0PswU

NahamSec. (2020). The Bug Hunter's Methodology v4.0 - Recon Edition by @jhaddix 

#NahamCon2020! https://youtu.be/p4JgIu1mceI

Novikov, I. (2022). How To Address Growing API Security Vulnerabilities In 2022. 

https://www.forbes.com/sites/forbestechcouncil/2022/07/25/how-to-address-growing-api-security-

vulnerabilities-in-2022

https://www.forbes.com/sites/forbestechcouncil/2022/07/25/how-to-address-growing-api-security-vulnerabilities-in-2022
https://www.forbes.com/sites/forbestechcouncil/2022/07/25/how-to-address-growing-api-security-vulnerabilities-in-2022
https://youtu.be/p4JgIu1mceI
https://youtu.be/Y2Y4Sk0PswU
https://nonamesecurity.com/wp-content/uploads/2023/09/api-security-disconnect-research-report-2023.pdf
https://nonamesecurity.com/wp-content/uploads/2023/09/api-security-disconnect-research-report-2023.pdf
https://hackerone.com/reports/1080437
https://hackerone.com/reports/633001
https://www.youtube.com/live/krCsMZfbuB4?feature=share
https://github.com/nikitastupin/clairvoyance
https://nmap.org/
https://www.manning.com/books/api-security-in-action
https://youtu.be/3_gd3a077RU
https://www.akamai.com/blog/security/api-discovery-and-profiling-visibility-to-protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.mozilla.org/en-GB/firefox/developer
https://www.bing.com/
https://www.legislation.gov.uk/uksi/2003/2426/contents/made


Newman, L. (2018). How Hackers Slipped by British Airways' Defenses. 

https://www.wired.com/story/british-airways-hack-details

OWASP. (n.d). In-depth attack surface mapping and asset discovery. https://github.com/owasp-

amass/amass

Offhourscoding. (n.d). Bug Bounty Recon Script. https://github.com/offhourscoding/recon

Organdonor. (2020). Access to information about any video and its owner via GraphQL endpoint 

[dictor.mail.ru]. https://hackerone.com/reports/924914

OWASP. (n.d). Completely ridiculous API (crAPI). https://github.com/OWASP/crAPI

Offensive Security. (N.D). Get Kali Linux Download. https://www.kali.org/get-kali

Offensive security offsec. (n.d). Exploit Database. https://www.exploit-db.com

Offensive security offsec. (n.d). Exploits + Shellcode + GHDB. https://gitlab.com/exploit-

database/exploitdb

OWASP, (2023). OWASP API Security Project. https://owasp.org/www-project-api-security

OWASP, (2023). OWASP Top 10 API Security Risks – 2023. 

https://owasp.org/API-Security/editions/2023/en/0x11-t10

OWASP, (2021). Top 10 Web Application Security Risks. https://owasp.org/www-project-top-ten

Offensive Security. (n.d). Google Hacking Database. https://www.exploit-db.com/google-hacking-

database

OJ. (n.d). Directory/File, DNS and VHost busting tool written in Go. 

https://github.com/OJ/GoBuster

Paxton, K. (n.d). Katie Paxton-Fear. https://insiderphd.dev

Projectdiscovery. (n.d). Fast passive subdomain enumeration tool. 

https://github.com/projectdiscovery/subfinder

Projectdiscovery. (n.d). A next-generation crawling and spidering framework. 

https://github.com/projectdiscovery/katana

Projectdiscovery. (n.d). MassDNS wrapper written in go that allows you to enumerate valid 

subdomains using active bruteforce as well as resolve subdomains with wildcard handling and easy 

input-output support. https://github.com/projectdiscovery/shuffledns

Postman. (n.d). Postman. https://www.postman.com

https://www.postman.com/
https://github.com/projectdiscovery/shuffledns
https://github.com/projectdiscovery/katana
https://github.com/projectdiscovery/subfinder
https://insiderphd.dev/
https://github.com/OJ/GoBuster
https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database
https://owasp.org/www-project-top-ten
https://owasp.org/API-Security/editions/2023/en/0x11-t10
https://owasp.org/www-project-api-security
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://www.exploit-db.com/
https://www.kali.org/get-kali
https://github.com/OWASP/crAPI
https://hackerone.com/reports/924914
https://github.com/offhourscoding/recon
https://github.com/owasp-amass/amass
https://github.com/owasp-amass/amass
https://www.wired.com/story/british-airways-hack-details


Projectdiscovery. (n.d).  Fast and customizable vulnerability scanner based on simple YAML based 

DSL. https://github.com/projectdiscovery/nuclei

Portswigger. (n.d). Burp Suite Community EditionBurp Suite Community Edition. 

https://portswigger.net/burp

Porup, J.M. (2016). How Hacking Team got hacked. https://arstechnica.com/information-

technology/2016/04/how-hacking-team-got-hacked-phineas-phisher

Rapid7, (2023). Under Siege: Rapid7-Observed Exploitation of Cisco ASA SSL VPNs. 

https://www.rapid7.com/blog/post/2023/08/29/under-siege-rapid7-observed-exploitation-of-cisco-

asa-ssl-vpns

RustScan. (n.d). The Modern Port Scanner. https://github.com/RustScan/RustScan

R0oth3x49. (n.d). An advanced cross-platform tool that automates the process of detecting and 

exploiting SQL injection security flaws. https://github.com/r0oth3x49/ghauri

Rahman, J. (2012). The Anonymous attack on HBGary. 

https://www.cs.bu.edu/~goldbe/teaching/HW55812/jarib.pdf

Richer, J. et al. (2016). Understanding API Security. 

https://livebook.manning.com/book/understanding-api-security/introduction

Ramsbey, T. (2023). All About API Pentesting! -- [Conversation with Corey Ball from APISec 

University!]. https://youtu.be/hLggD825Xgw

Stuttard, et al. (2011). The Web Application Hacker's Handbook: Finding and Exploiting Security 

Flaws. [Book]

Shah, S. (2021). Contextual Content Discovery: You've forgotten about the API endpoints. 

https://blog.assetnote.io/2021/04/05/contextual-content-discovery

Spring, T. (2021). 533M Facebook Accounts Leaked Online: Check if You Are Exposed. 

https://threatpost.com/facebook-accounts-leaked-check-exposed/165245

Salmon, D. (2019). I Scraped Millions of Venmo Payments. Your Data Is at Risk. 

https://www.wired.com/story/i-scraped-millions-of-venmo-payments-your-data-is-at-risk

Stateofapis. (2022). How important is API testing? https://stateofapis.com/#testing

SALT. (n.d). OWASP API Security Top 10: Insights from the API Security Trenches. 

https://content.salt.security/owasp-api-top-10-2023-ebook

https://content.salt.security/owasp-api-top-10-2023-ebook
https://stateofapis.com/#testing
https://www.wired.com/story/i-scraped-millions-of-venmo-payments-your-data-is-at-risk
https://threatpost.com/facebook-accounts-leaked-check-exposed/165245
https://blog.assetnote.io/2021/04/05/contextual-content-discovery
https://youtu.be/hLggD825Xgw
https://livebook.manning.com/book/understanding-api-security/introduction
https://www.cs.bu.edu/~goldbe/teaching/HW55812/jarib.pdf
https://github.com/r0oth3x49/ghauri
https://github.com/RustScan/RustScan
https://www.rapid7.com/blog/post/2023/08/29/under-siege-rapid7-observed-exploitation-of-cisco-asa-ssl-vpns
https://www.rapid7.com/blog/post/2023/08/29/under-siege-rapid7-observed-exploitation-of-cisco-asa-ssl-vpns
https://arstechnica.com/information-technology/2016/04/how-hacking-team-got-hacked-phineas-phisher
https://arstechnica.com/information-technology/2016/04/how-hacking-team-got-hacked-phineas-phisher
https://portswigger.net/burp
https://github.com/projectdiscovery/nuclei


SALT. (n.d). Protecting APIs From Modern Security Risks. https://content.salt.security/protecting-

apis-from-modern-sec-risks.html

SALT. (n.d). Understanding API Attacks: Why are they different and how can you stop them? 

https://content.salt.security/understanding-api-attacks-ebook

SALT. (n.d). API Security Best Practices. https://content.salt.security/wp-api-security-best-

practices.html

SALT. (n.d). How Shift-left Extremism is Harming Your API Security Strategy. 

https://content.salt.security/whitepaper-limits-of-shift-left.html

SALT. (n.d). Mapping the MITRE ATT&CK Framework to API Security. 

https://content.salt.security/MITRE-attack-framework-to-API-security

Sopas, D. (n.d).  Organize your API security assessment by using MindAPI. It's free and open for 

community collaboration. https://github.com/dsopas/MindAPI

Sherrard, M. et al. (2022). Liberty Counsel’s Donor Records and Pro-Trump Election Messaging 

Exposed in Data Breach. https://theintercept.com/2022/08/25/liberty-counsel-data-breach

Spring, T. (2018). T-Mobile Alerts 2.3 Million Customers of Data Breach Tied to Leaky API. 

https://threatpost.com/t-mobile-alerts-2-3-million-customers-of-data-breach-tied-to-leaky-api/

136896

S0md3v. (n.d). HTTP parameter discovery suite. https://github.com/s0md3v/Arjun

Sambal0x. (n.d). Some of my bug bounty tools. https://github.com/Sambal0x/Recon-tools

Six2dez. (n.d). reconFTW is a tool designed to perform automated recon on a target domain by 

running the best set of tools to perform scanning and finding out vulnerabilities. 

https://github.com/six2dez/reconftw

SolomonSklash. (n.d). A scripted pipeline of tools to streamline the bug bounty/penetration test 

reconnaissance phase, so you can focus on chomping bugs. 

https://github.com/SolomonSklash/chomp-scan

Shmilylty. (n.d). OneForAll是一款功能强大的子域收集工具. https://github.com/shmilylty/OneForAll

Screetsec. (n.d). Sudomy is a subdomain enumeration tool to collect subdomains and analyzing 

domains performing automated reconnaissance (recon) for bug hunting / pentesting. 

https://github.com/Screetsec/Sudomy

https://github.com/Screetsec/Sudomy
https://github.com/shmilylty/OneForAll
https://github.com/SolomonSklash/chomp-scan
https://github.com/six2dez/reconftw
https://github.com/Sambal0x/Recon-tools
https://github.com/s0md3v/Arjun
https://threatpost.com/t-mobile-alerts-2-3-million-customers-of-data-breach-tied-to-leaky-api/136896
https://threatpost.com/t-mobile-alerts-2-3-million-customers-of-data-breach-tied-to-leaky-api/136896
https://theintercept.com/2022/08/25/liberty-counsel-data-breach
https://github.com/dsopas/MindAPI
https://content.salt.security/MITRE-attack-framework-to-API-security
https://content.salt.security/whitepaper-limits-of-shift-left.html
https://content.salt.security/wp-api-security-best-practices.html
https://content.salt.security/wp-api-security-best-practices.html
https://content.salt.security/understanding-api-attacks-ebook
https://content.salt.security/protecting-apis-from-modern-sec-risks.html
https://content.salt.security/protecting-apis-from-modern-sec-risks.html


SilverPoision. (n.d). Rock-On is a all in one Recon tool that will just get a single entry of the 

Domain name and do all of the work alone. https://github.com/SilverPoision/Rock-ON

Sahil__soni. (2021). Graphql introspection is enabled and leaks details about the schema. 

https://hackerone.com/reports/1132803

Supernatural. (2015). Bypass access restrictions from API. https://hackerone.com/reports/67557

Swisskyrepo. (n.d). A list of useful payloads and bypass for Web Application Security and 

Pentest/CTF. https://github.com/swisskyrepo/PayloadsAllTheThings

Shodan. (n.d). Search Engine for the Internet of Everything. https://www.shodan.io

SSwagger editor. (n.d). Import and edit swagger documentation. https://editor.swagger.io

The Hacker News. (2023). API Security Trends 2023 – Have Organizations Improved their Security

Posture? https://thehackernews.com/2023/10/api-security-trends-2023-have.html

Ticarpi. (n.d). A toolkit for testing, tweaking and cracking JSON Web Tokens. 

https://github.com/ticarpi/jwt_tool

The Internet Archive. (n.d). TheWayBackMachine. https://archive.org

Tomnomnom. (n.d). Fetch all the URLs that the Wayback Machine knows about for a domain. 

https://github.com/tomnomnom/waybackurls

TryHackMe. (n.d). OWASP API Security Top 10 - 1. 

https://tryhackme.com/room/owaspapisecuritytop105w

TryHackMe. (n.d). OWASP API Security Top 10 - 2. 

https://tryhackme.com/room/owaspapisecuritytop10d0

Taylor, S. (2021). New LinkedIn Data Leak Leaves 700 Million Users Exposed. 

https://restoreprivacy.com/linkedin-data-leak-700-million-users

TechOmaha. (2022).  Advice from a Former Hacker: Protecting API’s - Alissa Knight. 

https://youtu.be/ImkD7KurkMY

Traceable. (2021). API Hacking 101, w/ Dr. Katie Paxton-Fear | by Traceable AI. 

https://youtu.be/qC8NQFwVOR0

UnderDefense. (2019). API Penetration Testing Report. REST APIPenetration Testing 

Reportfor[CLIENT]. https://underdefense.com/wp-content/uploads/2019/05/Anonymised-API-

Penetration-Testing-Report.pdf

https://underdefense.com/wp-content/uploads/2019/05/Anonymised-API-Penetration-Testing-Report.pdf
https://underdefense.com/wp-content/uploads/2019/05/Anonymised-API-Penetration-Testing-Report.pdf
https://youtu.be/qC8NQFwVOR0
https://youtu.be/ImkD7KurkMY
https://restoreprivacy.com/linkedin-data-leak-700-million-users
https://tryhackme.com/room/owaspapisecuritytop10d0
https://tryhackme.com/room/owaspapisecuritytop105w
https://github.com/tomnomnom/waybackurls
https://archive.org/
https://github.com/ticarpi/jwt_tool
https://thehackernews.com/2023/10/api-security-trends-2023-have.html
https://editor.swagger.io/
https://www.shodan.io/
https://github.com/swisskyrepo/PayloadsAllTheThings
https://hackerone.com/reports/67557
https://hackerone.com/reports/1132803
https://github.com/SilverPoision/Rock-ON


Venom26. (n.d). Ultimate Recon Bash Script. 

https://github.com/venom26/recon/blob/master/ultimate_recon.sh

Vxunderground. (n.d). CobaltStrike MANUALS_V2 Active Directory - Conti Ransomware 

Playbook. https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak/blob/main/

CobaltStrike%20MANUAL_V2%20.docx

Vxunderground, (n.d). Bassterlord (FishEye) Networking Manual. 

https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware

%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20%28FishEye

%29%20Networking%20Manual%20%28X%29.pdf

Weidman, G. (2014). Penetration Testing: A Hands-On Introduction to Hacking. [Book]

WhatRuns. (n.d). Discover what runs a website. https://www.whatruns.com

Wappalyzer. (n.d). Identify technologies on websites. https://www.wappalyzer.com

Wallwork, A. (2023). Setting up the virtual network - University of Chester. Cyber Concepts and 

Techniques - Component 2 – Portfolio.

Wallwork, A. (2023). Penetration Testing Application Programming Interface (API) Security – 

University of Chester. Dissertation Presentation.

0xspade. (n.d). Trying to make automated recon for bug bounties. 

https://github.com/0xspade/Automated-Scanner

Yassineaboukir. (n.d). A list of 3203 common API endpoints and objects designed for fuzzing. 

https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d

Yourbuddy25. (n.d). A small script for my recon during bug hunting. Needs some modifications. 

https://github.com/yourbuddy25/Hunter

Zaproxy. (n.d). Zed Attack Proxy (ZAP). https://www.zaproxy.org

Zoltan, M. (2022). Web Scrapers Claim to Possess and Sell Personal Data on 1.5 Billion Facebook 

Users on a Hacker Forum. https://www.privacyaffairs.com/facebook-data-sold-on-hacker-forum

https://www.privacyaffairs.com/facebook-data-sold-on-hacker-forum
https://www.zaproxy.org/
https://github.com/yourbuddy25/Hunter
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d
https://github.com/0xspade/Automated-Scanner
https://www.wappalyzer.com/
https://www.whatruns.com/
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak/blob/main/CobaltStrike%20MANUAL_V2%20.docx
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak/blob/main/CobaltStrike%20MANUAL_V2%20.docx
https://github.com/venom26/recon/blob/master/ultimate_recon.sh


Appendix

Appendix A - Ethical Approval Application

Ethical Approval Application:

Faculty of Science, Business & Enterprise
Science & Engineering Research Project Form - Student

Your Details:
Your Name: Adam Wallwork
Your student number: 1912062
Email Address:  1912062@chester.ac.uk
Programme of Study: Cyber security
Name of Principal Supervisor: Ashley wood
Title of Research Project: Penetration testing API security

Start date of project: Anticipated end date of project: 1/04/23

Please provide a brief summary of the proposed research and why you want to do it (no more 
than 150 words):

APIs are becoming increasingly important in modern software development, and are often
used to access sensitive data and services, having direct back-end access. However, APIs 
are also vulnerable to a range of security threats, such as IDOR , authentication, SQLi and 
other common vulnerabilities featured in the OWASP top 10. Penetration testing is a 
technique used to identify and exploit security vulnerabilities in systems and has been 
used successfully to improve the security of networks and applications. However, there is 
little research on the use of penetration testing to improve API security. Therefore, this 
research aims to address this gap in the literature by developing a methodology for 
conducting effective penetration testing of APIs and evaluating it’s effectiveness.

Please respond to the following questions:
Question Response 
Will your research be based on reviewing existing 
literature only?

Yes X      No  ☐    Not sure at this stage   ☐

Will your research involve mathematical modelling 
only?

Yes ☐      No  X   Not sure at this stage   ☐

Will your research involve you carrying out testing 
using an isolated or virtual computer system?

Yes X      No  ☐    Not sure at this stage   ☐

Are you intending to use research data available 
from an online source?

Yes X      No  ☐    Not sure at this stage   ☐

If yes, have you checked that there are no copyright
or data protection issues involved in you working 
with and reproducing this data?

Yes, I’ve checked and there are no issues X
Yes, I’ve checked and there are issues ☐  
No, I haven’t checked  ☐         

Will your research involve laboratory work? Yes X     No  ☐    Not sure at this stage   ☐

Will your research involve fieldwork? Yes ☐      No  X   Not sure at this stage   ☐



If you have answered ‘yes’ to either of these, have 
you carried out a Risk Assessment? 

Yes ☐      No  ☐    Not sure at this stage   ☐
no

Risk assessment reference number: n/a
Will you need to liaise with the Laboratory 
Manager regarding any special requirements to be 
observed in addition to standard lab procedures and 
PPE?

Yes ☐      No  X    
Virtual lab environemtn (Virtual machine)

Will your project involve you having direct contact 
with human participants, e.g. through interviews, 
focus groups, data gathering via questionnaires, 
surveys on social media, etc.?

Yes ☐      No  X    Not sure at this stage   ☐

Will your project involve you having direct contact 
with animals or animal tissues?

Yes ☐      No  X    Not sure at this stage   ☐

If you are not working directly with animals, or 
animal tissues, are you using research data about 
these which has collected by another person or 
organisation?

Yes ☐      No  X    Not sure at this stage   ☐

Is permission needed to use this data? Yes, permission is needed and I have got 
permission ☐ 
No permission is required X
I haven’t checked ☐  
    

Does your project involve the NHS in any way? Yes ☐      No  X    Not sure at this stage   ☐

Is your project likely to engage with the natural 
environment, e.g. by utilising samples collected 
from nature, producing hazardous chemical by-
products, creating noise pollution, etc.?

Yes ☐      No  X    Not sure at this stage   ☐

Will your project, including data-gathering or 
collaborative activities, involve research outside of 
England? 

Yes X      No  ☐    Not sure at this stage   ☐
Data gathering yes. Outside of England 
(physically) no.

If you are likely to travel outside of England to 
conduct research, where are you intending to go?  

Please provide details:

Are you aware of any risks to you in travelling to 
the destinations named above?

Yes ☐      No  ☐    n/a

Do you think this project might need ethical 
approval?

Yes ☐      No  ☐    n/a

Have you discussed this with your supervisor? Yes ☐      No  ☐    n/a

Your signature: Adam Thomas Wallwork

Supervisor’s Signature:

Comments from the Science & Engineering 
Research Ethics Committee No ethical issues identified.

Signature of the Chair of the Science & 
Engineering Research Ethics Committee:

Date: 03/04/23



Appendix B - Hacking Guides and Methodologies

Description Link

Guacamaya leaks (Barr, et al., 2023) against 

latin american police, military, government and 

private industry in HackBack video tutorial of 

how the hack took place.

https://enlacehacktivista.org/hackback2.webm

Leaked (Abrams, 2021) Conti Ransomware 

hacking manuals for affiliates to hack, exfiltrate 

and execute ransomware payload (Ilascu, 2021).

https://github.com/ForbiddenProgrammer/conti-

pentester-guide-leak

Explanation of the hack against the spyware 

company Flexispy (Cox, et al. 2017).

https://enlacehacktivista.org/images/8/8f/

Flexispy.txt

Explanation of the hack against the Christian 

ministry in protest against abortion rights 

(Sherrard, et al. 2022).

https://enlacehacktivista.org/libertycounsel.txt

Phineas Fishers HackBack video of the hack 

against the Spanish Catalan Police Union 

website (Cox, 2016).

https://www.youtube.com/watch?

v=kCLDqvDnGzA

HackBack video tutorial from the Guacamaya 

hacktivist group of them hacking the Pronico 

Nickel Mine company (Forbiddenstories, n.d).

https://kolektiva.media/w/

twJjCTkvumnugRy61BjD3T

Jason Haddix’s Bug Bounty Hunter web 

application hacking methodology for application

analysis (HackerOne, 2022).

https://www.youtube.com/watch?

v=FqnSAa2KmBI

Jason Haddix’s Bug Bounty Hunter 

reconnaissance web application hacking 

methodology (NahamSec, 2020).

https://www.youtube.com/watch?

v=p4JgIu1mceI

Phineas Fishers HackBack DIY Guide #3 for 

hacking into the cayman national bank in isle of 

man (Cox, 2019).

https://theanarchistlibrary.org/library/

subcowmandante-marcos-hack-back

Phineas Fishers HackBack DIY Guide #2 for https://enlacehacktivista.org/images/a/a3/

https://enlacehacktivista.org/images/a/a3/Hack_back2_en.txt
https://theanarchistlibrary.org/library/subcowmandante-marcos-hack-back
https://theanarchistlibrary.org/library/subcowmandante-marcos-hack-back
https://www.youtube.com/watch?v=p4JgIu1mceI
https://www.youtube.com/watch?v=p4JgIu1mceI
https://www.youtube.com/watch?v=FqnSAa2KmBI
https://www.youtube.com/watch?v=FqnSAa2KmBI
https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T
https://kolektiva.media/w/twJjCTkvumnugRy61BjD3T
https://www.youtube.com/watch?v=kCLDqvDnGzA
https://www.youtube.com/watch?v=kCLDqvDnGzA
https://enlacehacktivista.org/libertycounsel.txt
https://enlacehacktivista.org/images/8/8f/Flexispy.txt
https://enlacehacktivista.org/images/8/8f/Flexispy.txt
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak
https://github.com/ForbiddenProgrammer/conti-pentester-guide-leak
https://enlacehacktivista.org/hackback2.webm


hacking into the Hack Team (Bicchierai, 2016). Hack_back2_en.txt

Phineas Fishers HackBack DIY Guide #1 for 

hacking into Gamma Group International (Blue, 

2014).

https://enlacehacktivista.org/images/6/69/

Hack_back1.txt

Ransomware affiliate Bassterlord Network 

Hacking manual for ransoming companies 

exploiting Fortinet SSL VPN (DiMaggio, n.d).

https://web.archive.org/web/20230531145531/

https://papers.vx-underground.org/papers/

Malware%20Defense/Malware%20Analysis

%202021/2021-08-31%20-%20Bassterlord

%20%28FishEye%29%20Networking

%20Manual%20%28X%29.pdf

Ransomware affiliate Bassterlord Network 

Hacking manual for ransoming companies by 

means of brute-forcing and password spraying 

Cisco and Fortinet SSL VPNs using metasploit 

modules (Rapid7, 2023).

https://web.archive.org/web/

20230531144434if_/https://cdn-

151.anonfiles.com/vcD868ubz5/08a9b897-

1685544763/BasterLord+-

+Network+manual+v2.0.pdf

Conti Ransomware Hacking Playbook (Cyble, 

2021).

https://web.archive.org/web/

20230404175503if_/https://cdn-

150.anonfiles.com/satbX2i8z2/75a3be58-

1680631481/Conti_playbook_translated.pdf

Appendix C - Xmind

Xmind was used to make figures 2, 3, and 4 in Chapter 1 – Introduction. https://xmind.app

Appendix D - Grammarly

Grammarly was used during this research dissertation project to correct grammar, punctuation and 

spelling errors. https://app.grammarly.com

Appendix E - Postman

Postman could not be used during our research because it requires an active internet connection. 

However, as it is a API-specific intercepting proxy, much like Burpsuite, we note it as a valid tool to

use during real-world penetration testing engagements. https://www.postman.com

https://www.postman.com/
https://app.grammarly.com/
https://xmind.app/
https://web.archive.org/web/20230404175503if_/https://cdn-150.anonfiles.com/satbX2i8z2/75a3be58-1680631481/Conti_playbook_translated.pdf
https://web.archive.org/web/20230404175503if_/https://cdn-150.anonfiles.com/satbX2i8z2/75a3be58-1680631481/Conti_playbook_translated.pdf
https://web.archive.org/web/20230404175503if_/https://cdn-150.anonfiles.com/satbX2i8z2/75a3be58-1680631481/Conti_playbook_translated.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531144434if_/https://cdn-151.anonfiles.com/vcD868ubz5/08a9b897-1685544763/BasterLord+-+Network+manual+v2.0.pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://web.archive.org/web/20230531145531/https://papers.vx-underground.org/papers/Malware%20Defense/Malware%20Analysis%202021/2021-08-31%20-%20Bassterlord%20(FishEye)%20Networking%20Manual%20(X).pdf
https://enlacehacktivista.org/images/6/69/Hack_back1.txt
https://enlacehacktivista.org/images/6/69/Hack_back1.txt
https://enlacehacktivista.org/images/a/a3/Hack_back2_en.txt
https://enlacehacktivista.org/images/a/a3/Hack_back2_en.txt


Appendix F – Recon Automation Scripts

Tool Bash scripts that automate the reconnaissance process

ReconFTW https://github.com/six2dez/reconftw

BountyRecon https://github.com/AdmiralGaust/bountyRecon

Recon https://github.com/offhourscoding/recon

Recon-Tools https://github.com/Sambal0x/Recon-tools

Hunter https://github.com/yourbuddy25/Hunter

UltimateRecon https://github.com/venom26/recon/blob/master/ultimate_recon.sh

St8out https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd

LazyRecon https://github.com/capt-meelo/LazyRecon

Automated-Scanner https://github.com/0xspade/Automated-Scanner

OneForAll https://github.com/shmilylty/OneForAll

Chomp-Scan https://github.com/SolomonSklash/chomp-scan

Sudomy https://github.com/Screetsec/Sudomy

Findomain https://github.com/Findomain/Findomain

Rock-ON https://github.com/SilverPoision/Rock-ON

Recon-Pipeline https://github.com/epi052/recon-pipeline

Appendix G – Bug Bounty Responsible Disclosure Reports

The table below identified bug bounty reports specific to APIs. The focus of the table is to show

real-world  API  vulnerabilities  and  their  impact  and  how  the  researcher  communicates  to  the

organisation the vulnerability discovered, which is a crucial skill in penetration testing. We could

not find real-world penetration testing reports for APIs as they are often not publicly available, so

we chose to use public bug bounty programs and their reports.

REST - Bug Bounty Report Description Researcher Report

Bypass access restrictions from 

API

Users who had limited access to 

login to the Shopifys mobile 

application could capture with an 

supernatural https://hackerone.com/

reports/67557

https://hackerone.com/reports/67557
https://hackerone.com/reports/67557
https://github.com/epi052/recon-pipeline
https://github.com/SilverPoision/Rock-ON
https://github.com/Findomain/Findomain
https://github.com/Screetsec/Sudomy
https://github.com/SolomonSklash/chomp-scan
https://github.com/shmilylty/OneForAll
https://github.com/0xspade/Automated-Scanner
https://github.com/capt-meelo/LazyRecon
https://gist.github.com/dwisiswant0/5f647e3d406b5e984e6d69d3538968cd
https://github.com/venom26/recon/blob/master/ultimate_recon.sh
https://github.com/yourbuddy25/Hunter
https://github.com/Sambal0x/Recon-tools
https://github.com/offhourscoding/recon
https://github.com/AdmiralGaust/bountyRecon
https://github.com/six2dez/reconftw


intercepting proxy (MITM) their 

access tokens to be able to query 

Shopifys API to create new users 

with higher privileges, giving them 

the ability to add and remove users 

with the highest level system 

account privileges on the platform.

No brute force protection on 

web-api-cloud.acronis.com

Though there might be brute-force 

protections on authentication 

portals such as login pages, there 

were no such protections on the 

API.

hensis https://hackerone.com/

reports/972045

API on campus-vtc.com allows 

access to ~100 Uber users full 

names, email addresses and 

telephone numbers.

Excessive data exposure on one of 

Uber's API endpoints, which 

exposed the personal information 

(PII) of registered users.

healdb https://hackerone.com/

reports/580268

Missing authentication in buddy 

group API of LINE TIMELINE

Account takeover and privilege 

escalation vulnerability via request 

header manipulation in the API.

e26174222 https://hackerone.com/

reports/1283938

Bumble API exposes read status 

of chat messages

Read receipts in private messages is

not a feature offered to users. 

However, by making an HTTP 

POST request to the API endpoint, 

it is possible to see if users have or 

have not read the sent messages.

ndrong https://hackerone.com/

reports/1080437

GraphQL - Bug Bounty Report Description Researcher Report

[NR Infrastructure] Bypass of 

#200576 through GraphQL 

query abuse - allows restricted 

user access to root account 

license key

Improper authorisation controls in 

place allow a user to access 

privileged account information.

jon_bottarini https://hackerone.com/

reports/276174

Private System Note Disclosure 

using GraphQL

Account features to access user 

account information are restricted 

ngalog https://hackerone.com/

https://hackerone.com/reports/633001
https://hackerone.com/reports/276174
https://hackerone.com/reports/276174
https://hackerone.com/reports/1080437
https://hackerone.com/reports/1080437
https://hackerone.com/reports/1283938
https://hackerone.com/reports/1283938
https://hackerone.com/reports/580268
https://hackerone.com/reports/580268
https://hackerone.com/reports/972045
https://hackerone.com/reports/972045


to members only. However, via a 

GraphQL endpoint, non-members 

can see member information.

reports/633001

Access to information about any

video and its owner via 

GraphQL endpoint 

[dictor.mail.ru]

An insecure Direct Object 

Reference vulnerability in a 

GraphQL query endpoint allows 

information otherwise unavailable 

to the user requesting the 

information.

organdonor https://hackerone.com/

reports/924914

Graphql introspection is enabled

and leaks details about the 

schema

GraphQL introspection, meant to be

disabled once deployed into 

production, enabled the researcher 

to enumerate the endpoints schema.

sahil__soni https://hackerone.com/

reports/1132803

[h1-2102] shopApps query from 

the graphql at /users/api returns 

all existing created apps, 

including private ones

Shopify GraphQL endpoint allows 

unauthorised users to view private 

applications on the Shopify 

platform.

inhibitor181 https://hackerone.com/

reports/1085332

Appendix H – API Specific penetration testing tools and 
resources

Tool Resource

Kiterunner https://github.com/assetnote/kiterunner

Postman https://www.postman.com

JWT Tool https://github.com/ticarpi/jwt_tool

Graphw00f https://github.com/dolevf/graphw00f

Zaproxy GraphQL Introspection enumeration 

add-on

https://www.zaproxy.org/blog/2020-08-28-

introducing-the-graphql-add-on-for-zap

Arjun https://github.com/s0md3v/Arjun

JWT Hacking Tricks https://github.com/swisskyrepo/

PayloadsAllTheThings/tree/master/JSON

%20Web%20Token

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token
https://github.com/s0md3v/Arjun
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap
https://github.com/dolevf/graphw00f
https://github.com/ticarpi/jwt_tool
https://www.postman.com/
https://github.com/assetnote/kiterunner
https://hackerone.com/reports/1085332
https://hackerone.com/reports/1085332
https://hackerone.com/reports/1132803
https://hackerone.com/reports/1132803
https://hackerone.com/reports/924914
https://hackerone.com/reports/924914
https://hackerone.com/reports/633001
https://hackerone.com/reports/633001


NSE script for GraphQL introspection https://github.com/dolevf/nmap-graphql-

introspection-nse

GraphQL schema enumeration https://github.com/nikitastupin/clairvoyance

Decode online JWT tokens https://jwt.io

API Hacking word lists https://gist.github.com/yassineaboukir/

8e12adefbd505ef704674ad6ad48743d

API Hacking word lists https://github.com/chrislockard/api_wordlist

API Hacking word lists for GraphQL https://github.com/danielmiessler/SecLists/

blob/master/Discovery/Web-Content/graphql.txt

General API common names and endpoints 

word lists

https://github.com/hAPI-hacker/Hacking-APIs

https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/graphql.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/graphql.txt
https://github.com/chrislockard/api_wordlist
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d
https://jwt.io/
https://github.com/nikitastupin/clairvoyance
https://github.com/dolevf/nmap-graphql-introspection-nse
https://github.com/dolevf/nmap-graphql-introspection-nse

	Abstract
	Disclaimer
	Acknowledgements
	1. Chapter 1 - Introduction
	1.1 Background and Context
	1.2 Problem Statement
	1.3 Rationale for the Study
	1.4 Research Question
	1.5 Research Hypothesis
	1.6 Objectives of the Study
	1.7 Scope of the Study
	1.8 Limitations of the Study
	1.9 API Hacking Methodology Overview
	1.10 API Vulnerabilities – OWASP TOP TEN
	1.11 Conclusion

	2. Chapter 2 - Literature Review
	2.1 Introduction
	2.2 Theoretical Foundations
	2.3 Literature Sourcing Process
	2.3.1 Inclusion Criteria
	2.3.1.1 Relevance to Topic
	2.3.1.2 Time Frame
	2.3.1.3 Type of Literature

	2.3.2 Exclusion Criteria
	2.3.2.1 Irrelevance to API hacking
	2.3.2.2 Time frame
	2.3.2.3 Authorship and Contribution

	2.3.3 Search Strategy
	2.3.4 Databases

	2.4 Research Methodology in Cybersecurity
	2.5 State of the Art in API Security
	2.6 Penetration Testing
	2.6.1 General Principles and Techniques

	2.7 API Penetration Testing
	2.7.1 API Vulnerabilities
	2.7.2 OWASP TOP TEN
	2.7.3 Comparable Frameworks
	2.7.4 Data Breaches via API Exploitation

	2.8 Interdisciplinary Considerations
	2.8.1 Legal
	2.8.2 Ethical Concerns
	2.8.3 Business Implications

	2.9 Identified Research Gaps
	2.9.1 API Security
	2.9.2 Penetration Testing and Ethical Hacking
	2.9.3 Data breaches
	2.9.4 API Vulnerabilities and Exploitation
	2.9.5 API Development and Secure Coding Practices

	2.10 Relevance to Hypothesis
	2.11 Critical Discussion
	2.11.1 API Security
	2.11.2 Penetration Testing and Ethical Hacking
	2.11.3 Data breaches
	2.11.4 API Vulnerabilities and Exploitation
	2.11.5 API Development and Secure Coding Practices

	2.12 Conclusion

	3. Chapter 3 – Research Methodology
	3.1 Introduction
	3.2 Background and Justification
	3.3 Research Approach
	3.4 Tool Selection
	3.5 Ethical Considerations
	3.6 Virtualised Testing Environment
	3.7 The Importance of a Methodology
	3.7.1 Limitations of the Methodology

	3.8 Configuring The Testing Environment
	3.8.1 Attackers Machine

	3.9 Conclusion

	4. Chapter 4 – Research Implementation
	4.1 Introduction
	4.2 Kali Linux - Tester
	4.2.1 Vulnerable API Machines
	4.2.1.1 OWASP Juice Shop
	4.2.1.2 Completely Ridiculous API - OWASP crAPI
	4.2.1.3 Damn Vulnerable GraphQL Application – DVGA
	4.2.1.4 VAmPI
	4.2.1.5 OWASP Pixi


	4.3 The API Penetration Testers Methodology
	4.4 Information Gathering
	4.4.1 API Identification
	4.4.2 API Documentation Review
	4.4.3 Authentication & Authorisation
	4.4.4 Tool Summary

	4.5 Reconnaissance
	4.5.1 Passive
	4.5.1.1 Dorking
	4.5.1.2 DNS Enumeration
	4.5.1.3 Technology Identification
	4.5.1.4 Vulnerability Search
	4.5.1.5 Discovering Historical Data

	4.5.2 Active
	4.5.2.1 Port scanning
	4.5.2.2 Subdomain Enumeration
	4.5.2.3 Walking The Application
	4.5.2.4 Web Crawling – Spidering
	4.5.2.5 Technology Identification
	4.5.2.6 Source Code Analysis – JavaScript

	4.5.3 Tool Summary

	4.6 Content Discovery
	4.6.1 Subdomain Brute-Forcing
	4.6.2 Directory Brute-Forcing
	4.6.2.1 File Brute-Forcing

	4.6.3 Endpoint Analysis
	4.6.4 API Version Discovery
	4.6.5 Parameter Fuzzing
	4.6.6 Tool Summary

	4.7 Vulnerability and Misconfiguration Scanning – Automated
	4.7.1 Tool Summary

	4.8 API Analysis
	4.8.1 Broken Object Level Authorisation - BOLA


	5. Chapter 5 - Testing
	5.1 Introduction
	5.2 Testing Environment Setup
	5.3 Application of the API Penetration Testers Methodology
	5.3.1 Information Gathering
	5.3.1.1 API Identification
	5.3.1.2 Documentation Review
	5.3.1.3 Authentication Analysis

	5.3.2 Reconnaissance
	5.3.2.1 Port Scanning
	5.3.2.2 Technology Identification

	5.3.3 Content Discovery
	5.3.4 Endpoint Analysis
	5.3.5 Vulnerability Scanning
	5.3.6 API Analysis
	5.3.7 Exploitation


	6. Chapter 6 – Discussion and Conclusion
	6.1 Introduction
	6.2 Research Context
	6.3 Hypothesis Revisited
	6.4 Recap of The Literature Review
	6.5 Research Methodology Overview
	6.6 Research Implementation Overview
	6.7 Testing and Results Summary
	6.7.1 Effectiveness
	6.7.2 Limitations and Challenges
	6.7.3 Areas for Improvement
	6.7.3.1 Expand testing
	6.7.3.2 Modularise the Methodology
	6.7.3.3 Documentation & Note Taking


	6.8 Research Reflections
	6.8.1 Objectives
	6.8.2 Findings
	6.8.3 Contributions

	6.9 Recommendations for Future Work
	6.10 Dissertation Research Project Conclusion

	References
	Appendix
	Appendix A - Ethical Approval Application
	Appendix B - Hacking Guides and Methodologies
	Appendix C - Xmind
	Appendix D - Grammarly
	Appendix E - Postman
	Appendix F – Recon Automation Scripts
	Appendix G – Bug Bounty Responsible Disclosure Reports
	Appendix H – API Specific penetration testing tools and resources


